Skip to Content
MilliporeSigma
  • A Crucial Role of CXCL14 for Promoting Regulatory T Cells Activation in Stroke.

A Crucial Role of CXCL14 for Promoting Regulatory T Cells Activation in Stroke.

Theranostics (2017-04-07)
Hsu-Tung Lee, Shih-Ping Liu, Chen-Huan Lin, Sophie Wei Lee, Chung Y Hsu, Huey-Kang Sytwu, Chia-Hung Hsieh, Woei-Cherng Shyu
ABSTRACT

Inflammatory processes have a detrimental role in the pathophysiology of ischemic stroke. However, little is known about the endogenous anti-inflammatory mechanisms in ischemic brain. Here, we identify CXCL14 as a critical mediator of these mechanisms. CXCL14 levels were upregulated in the ischemic brains of humans and rodents. Moreover, hypoxia inducible factor-1α (HIF-1α) drives hypoxia- or cerebral ischemia (CI)-dependent CXCL14 expression via directly binding to the CXCL14 promoter. Depletion of CXCL14 inhibited the accumulation of immature dendritic cells (iDC) or regulatory T cells (Treg) and increased the infarct volume, whereas the supplementation of CXCL14 had the opposite effects. CXCL14 promoted the adhesion, migration, and homing of circulating CD11c+ iDC to the ischemic tissue via the upregulation of the cellular prion protein (PrPC), PECAM-1, and MMPs. The accumulation of Treg in ischemic areas of the brain was mediated through a cooperative effect of CXCL14 and iDC-secreted IL-2-induced Treg differentiation. Interestingly, CXCL14 largely promoted IL-2-induced Treg differentiation. These findings indicate that CXCL14 is a critical immunomodulator involved in the stroke-induced inflammatory reaction. Passive CXCL14 supplementation provides a tractable path for clinical translation in the improvement of stroke-induced neuroinflammation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Pyridinium chlorochromate, 98%
Sigma-Aldrich
MISSION® esiRNA, targeting human PRNP
Sigma-Aldrich
2-Methoxyestradiol, powder
Sigma-Aldrich
SB−3CT, ≥98% (HPLC), powder
Sigma-Aldrich
MISSION® esiRNA, targeting human PECAM1