コンテンツへスキップ
Merck

MBD0041

Sigma-Aldrich

Akkermansia muciniphila FISH probe - Cy3

Probe for fluorescence in situ hybridization (FISH),20 μM in water

ログイン組織・契約価格を表示する


About This Item

UNSPSCコード:
12352200
NACRES:
NA.55

品質水準

テクニック

FISH: suitable

蛍光検出

λex 550 nm; λem 570 nm (Cy3)

輸送温度

dry ice

保管温度

−20°C

詳細

Fluorescent In Situ Hybridization technique (FISH) is based on the hybridization of fluorescent labeled oligonucleotide probe to a specific complementary DNA or RNA sequence in whole and intact cells.1 Microbial FISH allows the visualization, identification and isolation of bacteria due to recognition of ribosomal RNA also in unculturable samples.2

FISH technique can serve as a powerful tool in the microbiome research field by allowing the observation of native microbial populations in diverse microbiome environments, such as samples from human origin (blood3 and tissue4), microbial ecology (solid biofilms5 and aquatic systems6) and plants7. It is strongly recommended to include positive and negative controls in FISH assays to ensure specific binding of the probe of interest and appropriate protocol conditions. We offer positive (MBD0032/33) and negative control (MBD0034/35) probes, that accompany the specific probe of interest.

Akkermansia muciniphila probe specifically recognizes Akkermansia muciniphila cells.

Akkermansia muciniphila is a gram negative, oval shaped, non-motile, non-spore forming strictly anaerobic bacteria.8 A.muciniphila inhabits the gastrointestinal tracts of more than 90% of adults and constitutes 1 to 4% of the fecal microbiota.9 It is one of the top 20 most abundant species detectable in the human gut.10

The mucus layer of the human intestine is a niche which is colonized by specific bacteria such as A. muciniphila. A. muciniphila is able to degrade mucin, a key mucus component, using the enzymes sialidase and fucosidase, and utilize it as a source of carbon and nitrogen.11 Consequently, the host produces additional mucus while the bacterium produces oligosaccharides and Short Chain Fatty Acids (SCFAs) that can be utilized by the host and trigger the immune system. An additional protective effect of the SCFA is stimulation of mucus-associated microbiota growth, that serves as a barrier against penetration of pathogens to intestinal cells.9,12

It was found that A.muciniphila abundance in the gut was correlated to a healthy intestine and inversely correlated to many disease conditions.11 In comparison to healthy controls, A.muciniphila levels were low in patients with intestinal disorders, such as inflammatory bowel disease (IBD), but also in other conditions, such as autism, atopy, and obesity.11,13-16 Therefore, the level of A.muciniphila was suggested to serve as a biomarker for healthy intestine.17

A. muciniphila is a promising potential probiotic that can be administrated for the treatment of diseases such as, colitis, metabolic syndromes, immune diseases and cancer.10

FISH technique was successfully used to identify A.muciniphila with the probe in various samples such as pure culture (as described in the figure legends and18), fecal samples 19-21, gut lumen content 22, appendix samples 23, cecum content and tissue24,25 and colon tissue26. The probe can also be used for FISH coupled with flow cytometry (FCM-FISH)19,20,21 and FISH combined with Raman microspectroscopy 24.

アプリケーション

Probe for fluorescence in situ hybridization (FISH),recognizes Akkermansia muciniphila cells

特徴および利点

  • Visualize, identify and isolate Akkermansia muciniphila cells.
  • Observe native A. muciniphila cell populations in diverse microbiome environments.
  • Specific, sensitive and robust identification of A.muciniphila in bacterial mixed population.
  • Specific, sensitive and robust identification even when A. muciniphila is in low abundance in the sample.
  • FISH can complete PCR based detection methods by avoiding contaminant bacteria detection.
  • Provides information on A.muciniphila morphology.
  • Identify A.muciniphila in clinical samples such as, gut lumen content, appendix samples (formalin-fixed paraffin-embedded (FFPE) samples), fecal samples and colon tissue.
  • The ability to detect A.muciniphila in its natural habitat is an essential tool for studying host-microbiome interaction.

保管分類コード

12 - Non Combustible Liquids

WGK

nwg

引火点(°F)

Not applicable

引火点(℃)

Not applicable


適用法令

試験研究用途を考慮した関連法令を主に挙げております。化学物質以外については、一部の情報のみ提供しています。 製品を安全かつ合法的に使用することは、使用者の義務です。最新情報により修正される場合があります。WEBの反映には時間を要することがあるため、適宜SDSをご参照ください。

Jan Code

MBD0041-VAR:
MBD0041-50UL-PW:
MBD0041-50UL:


試験成績書(COA)

製品のロット番号・バッチ番号を入力して、試験成績書(COA) を検索できます。ロット番号・バッチ番号は、製品ラベルに「Lot」または「Batch」に続いて記載されています。

以前この製品を購入いただいたことがある場合

文書ライブラリで、最近購入した製品の文書を検索できます。

文書ライブラリにアクセスする

Muriel Derrien et al.
Applied and environmental microbiology, 74(5), 1646-1648 (2007-12-18)
A 16S rRNA-targeted probe, MUC-1437, was designed and validated in order to determine the presence and numbers of cells of Akkermansia muciniphila, a mucin degrader, in the human intestinal tract. As determined by fluorescent in situ hybridization, A. muciniphila accounted
David Berry et al.
The ISME journal, 6(11), 2091-2106 (2012-05-11)
Human inflammatory bowel disease and experimental colitis models in mice are associated with shifts in intestinal microbiota composition, but it is unclear at what taxonomic/phylogenetic level such microbiota dynamics can be indicative for health or disease. Here, we report that
Alexander Swidsinski et al.
Gut, 60(1), 34-40 (2009-11-21)
Acute appendicitis is a local intestinal inflammation with unclear origin. The aim was to test whether bacteria in appendicitis differ in composition to bacteria found in caecal biopsies from healthy and disease controls. We investigated sections of 70 appendices using
Bhanu Priya Ganesh et al.
PloS one, 8(9), e74963-e74963 (2013-09-17)
Excessive mucin degradation by intestinal bacteria may contribute to inflammatory bowel diseases because access of luminal antigens to the intestinal immune system is facilitated. This study investigated how the presence of a mucin degrading commensal bacterium affects the severity of
Ting Zhang et al.
Microbial biotechnology, 12(6), 1109-1125 (2019-04-23)
Akkermansia muciniphila (A. muciniphila), an intestinal symbiont colonizing in the mucosal layer, is considered to be a promising candidate as probiotics. A. muciniphila is known to have an important value in improving the host metabolic functions and immune responses. Moreover, A. muciniphila may

ライフサイエンス、有機合成、材料科学、クロマトグラフィー、分析など、あらゆる分野の研究に経験のあるメンバーがおります。.

製品に関するお問い合わせはこちら(テクニカルサービス)