コンテンツへスキップ
Merck
  • GD1a Overcomes Inhibition of Myelination by Fibronectin via Activation of Protein Kinase A: Implications for Multiple Sclerosis.

GD1a Overcomes Inhibition of Myelination by Fibronectin via Activation of Protein Kinase A: Implications for Multiple Sclerosis.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2017-09-14)
Jing Qin, Arend H Sikkema, Kristine van der Bij, Jenny C de Jonge, Karin Klappe, Vera Nies, Johan W Jonker, Jan Willem Kok, Dick Hoekstra, Wia Baron
要旨

Remyelination failure by oligodendrocytes contributes to the functional impairment that characterizes the demyelinating disease multiple sclerosis (MS). Since incomplete remyelination will irreversibly damage axonal connections, treatments effectively promoting remyelination are pivotal in halting disease progression. Our previous findings suggest that fibronectin aggregates, as an environmental factor, contribute to remyelination failure by perturbing oligodendrocyte progenitor cell (OPC) maturation. Here, we aim at elucidating whether exogenously added gangliosides (i.e., cell surface lipids with a potential to modulate signaling pathways) could counteract fibronectin-mediated inhibition of OPC maturation. Exclusive exposure of rat oligodendrocytes to GD1a, but not other gangliosides, overcomes aggregated fibronectin-induced inhibition of myelin membrane formation, in vitro, and OPC differentiation in fibronectin aggregate containing cuprizone-induced demyelinated lesions in male mice. GD1a exerts its effect on OPCs by inducing their proliferation and, at a late stage, by modulating OPC maturation. Kinase activity profiling revealed that GD1a activated a protein kinase A (PKA)-dependent signaling pathway and increased phosphorylation of the transcription factor cAMP response element-binding protein. Consistently, the effect of GD1a in restoring myelin membrane formation in the presence of fibronectin aggregates was abolished by the PKA inhibitor H89, whereas the effect of GD1a was mimicked by the PKA activator dibutyryl-cAMP. Together, GD1a overcomes the inhibiting effect of aggregated fibronectin on OPC maturation by activating a PKA-dependent signaling pathway. Given the persistent presence of fibronectin aggregates in MS lesions, ganglioside GD1a might act as a potential novel therapeutic tool to selectively modulate the detrimental signaling environment that precludes remyelination.SIGNIFICANCE STATEMENT As an environmental factor, aggregates of the extracellular matrix protein fibronectin perturb the maturation of oligodendrocyte progenitor cells (OPCs), thereby impeding remyelination, in the demyelinating disease multiple sclerosis (MS). Here we demonstrate that exogenous addition of ganglioside GD1a overcomes the inhibiting effect of aggregated fibronectin on OPC maturation, both in vitro and in vivo, by activating a PKA-dependent signaling pathway. We propose that targeted delivery of GD1a to MS lesions may act as a potential novel molecular tool to boost maturation of resident OPCs to overcome remyelination failure and halt disease progression.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
モノクロナール抗β-アクチン マウス宿主抗体, clone AC-15, ascites fluid
Sigma-Aldrich
Anti-Olig-2 Antibody, Chemicon®, from rabbit
Sigma-Aldrich
Anti-Fibronectin Antibody, Chemicon®, from rabbit
Sigma-Aldrich
1,2-ジリノレオイル-3-パルミトイル-rac-グリセリン, ≥95% (TLC), liquid