콘텐츠로 건너뛰기
Merck
모든 사진(2)

주요 문서

701963

Sigma-Aldrich

Poly(ethylene glycol) diacrylate

average Mn 6,000, acrylate, ≤1,500 ppm MEHQ as inhibitor

동의어(들):

Polyethylene glycol, PEG diacrylate

로그인조직 및 계약 가격 보기


About This Item

CAS Number:
MDL number:
UNSPSC 코드:
12162002
NACRES:
NA.23

product name

Poly(ethylene glycol) diacrylate, average Mn 6,000, contains ≤1500 ppm MEHQ as inhibitor

형태

solid

Quality Level

분자량

average Mn 6,000

포함

≤1500 ppm MEHQ as inhibitor

반응 적합성

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

전이 온도

Tm 59-63 °C

Ω-끝

acrylate

α-끝

acrylate

폴리머 구조

shape: linear
functionality: homobifunctional

저장 온도

−20°C

SMILES string

OCCO.OC(=O)C=C

InChI

1S/C8H10O4/c1-3-7(9)11-5-6-12-8(10)4-2/h3-4H,1-2,5-6H2

InChI key

KUDUQBURMYMBIJ-UHFFFAOYSA-N

유사한 제품을 찾으십니까? 방문 제품 비교 안내

일반 설명

Poly(ethylene glycol)diacrylate (PEGDA) is a long chain, hydrophilic and crosslinking monomer widelyused in tissue engineering.

애플리케이션

PEGDA is widely used as a scaffolding material for tissue engineering applications due to its biocompatibility and inherent resistance to protein adhesion.

It can be used as an alloying agent to prepare polymer membranes for gas separation applications. For example, an alloyed poly(Ether Block Amide)/ PEGDA membrane can be used for the separation of CO2/H2.

It can also be used as aprecursor to fabricate polymer electrolyte membranes(PEMs) for flexible Li-ionbatteries. The addition of PEGDA enhances the ionic conductivity, thermal stability,and mechanical toughness of PEMs.

특징 및 장점

  • Highly hydrophilic
  • Non-toxic
  • Biocompatible
  • Non-immunogenic

픽토그램

CorrosionExclamation mark

신호어

Danger

유해 및 위험 성명서

Hazard Classifications

Eye Dam. 1 - Skin Irrit. 2 - Skin Sens. 1

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable

개인 보호 장비

dust mask type N95 (US), Eyeshields, Faceshields, Gloves


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Shaun P Garland et al.
Langmuir : the ACS journal of surfaces and colloids, 30(8), 2101-2108 (2014-02-15)
A growing body of literature broadly documents that a wide array of fundamental cell behaviors are modulated by the physical attributes of the cellular microenvironment, yet in vitro assays are typically carried out using tissue culture plastic or glass substrates
Eyal Karzbrun et al.
Nature physics, 14(5), 515-522 (2018-05-16)
Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a
Adel Badria et al.
Journal of materials science. Materials in medicine, 29(11), 175-175 (2018-11-11)
Heart valve diseases remain common in industrialized countries. Bioprosthetic heart valves, introduced as free of anticoagulation therapy alternatives to mechanical substitutes. Still they suffer from long term failure due to calcification. Different treatment methods introduced to inhibit calcification, have so
Sandeep Ameta et al.
Nature communications, 12(1), 842-842 (2021-02-10)
Discovering autocatalytic chemistries that can evolve is a major goal in systems chemistry and a critical step towards understanding the origin of life. Autocatalytic networks have been discovered in various chemistries, but we lack a general understanding of how network
Ruohong Shi et al.
Small (Weinheim an der Bergstrasse, Germany), 16(37), e2002946-e2002946 (2020-08-11)
Hydrogels with the ability to change shape in response to biochemical stimuli are important for biosensing, smart medicine, drug delivery, and soft robotics. Here, a family of multicomponent DNA polymerization motor gels with different polymer backbones is created, including acrylamide-co-bis-acrylamide

문서

Scaffold patterning with poly(ethylene glycol)-based hydrogels for cell presence in 2D and 3D environments on photoactive substrates.

In the past two decades, tissue engineering and regenerative medicine have become important interdisciplinary fields that span biology, chemistry, engineering, and medicine.

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

조직 공학과 약물 전달과 같은 생명 공학의 진보는 다양한 기능성 바이오 소재에 대한 수요 증가를 동반합니다. 연구의 집중 관심 대상이 되어온 바이오 소재의 한 분야는 바로 하이드로겔으로, 화학적으로나 물리적으로 세포의 자연 환경과 유사하게 닮아 있기 때문에 세포를 키우는 토대로 사용될 수 있습니다. 본 기술 문서에서는 일반적으로 면역 반응을 유발하지 못하기 때문에 생물학적 용도로 적합한 PEG(폴리에틸렌 글리콜) 하이드로겔에 대해 상세하게 논의합니다. PEG는 쉽게 이용할 수 있으며, 손쉽게 고분자를 수정하여 세포 배양을 위한 2D 및 3D 뼈대를 포함한 하이드로겔 구성에 광범위하게 사용할 수 있습니다. 또한 분해성 결합을 통해 치료제 출시를 위한 다양한 응용분야에도 도움을 줍니다.

모두 보기

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.