콘텐츠로 건너뛰기
Merck
모든 사진(2)

주요 문서

767549

Sigma-Aldrich

Poly(ethylene glycol) diacrylate

average Mn 20,000, PEG average Mn 20,000 (n~450), acrylate, ≤1000 ppm MEHQ as inhibitor

동의어(들):

PEG diacrylate, Polyethylene glycol

로그인조직 및 계약 가격 보기


About This Item

UNSPSC 코드:
12162002
NACRES:
NA.23

product name

Poly(ethylene glycol) diacrylate, average Mn 20,000, contains ≤1000 ppm MEHQ as inhibitor

형태

solid

Quality Level

분자량

PEG average Mn 20,000 (n~450)
average Mn 20,000

포함

≤1000 ppm MEHQ as inhibitor

반응 적합성

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

mp

60-65 °C

Ω-끝

acrylate

α-끝

acrylate

폴리머 구조

shape: linear
functionality: homobifunctional

저장 온도

−20°C

일반 설명

Poly(ethylene glycol) diacrylate (PGEDA) is used for synthesising highly cross-linked hydrogels which are used as biomaterials in tissue engineering. These hydrogels are formed using non-cytotoxic photo initiators. PEG hydrogels can be easily covalently linked to bioactive proteins and peptides which in turn promote specific cell activity either on the surface or within the hydrogel.

애플리케이션

This homobifunctional PEG can be used in hydrogel applications; biocompatibilization; thiol-ene coupling; and other applications using cross-linked PEG networks.

픽토그램

CorrosionExclamation mark

신호어

Danger

유해 및 위험 성명서

Hazard Classifications

Eye Dam. 1 - Skin Irrit. 2 - Skin Sens. 1

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Pilnam Kim et al.
Lab on a chip, 6(11), 1432-1437 (2006-10-27)
We present a simple and widely applicable method to fabricate micro- and nanochannels comprised entirely of crosslinked polyethylene glycol (PEG) by using UV-assisted irreversible sealing to bond partially crosslinked PEG surfaces. The method developed here can be used to form
Julia E Leslie-Barbick et al.
Biomaterials, 32(25), 5782-5789 (2011-05-27)
Microvascularization of tissue engineered constructs was achieved by utilizing a VEGF-mimicking peptide, QK, covalently bound to a poly(ethylene glycol) hydrogel matrix. The 15-amino acid peptide, developed by D'Andrea et al., was modified with a PEG-succinimidyl ester linker on the N-terminus
Won-Gun Koh et al.
Langmuir : the ACS journal of surfaces and colloids, 18(7), 2459-2462 (2002-06-29)
We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of
Ruohong Shi et al.
Small (Weinheim an der Bergstrasse, Germany), 16(37), e2002946-e2002946 (2020-08-11)
Hydrogels with the ability to change shape in response to biochemical stimuli are important for biosensing, smart medicine, drug delivery, and soft robotics. Here, a family of multicomponent DNA polymerization motor gels with different polymer backbones is created, including acrylamide-co-bis-acrylamide

문서

Professor Shrike Zhang (Harvard Medical School, USA) discusses advances in 3D-bioprinted tissue models for in vitro drug testing, reviews bioink selections, and provides application examples of 3D bioprinting in tissue model biofabrication.

In the past two decades, tissue engineering and regenerative medicine have become important interdisciplinary fields that span biology, chemistry, engineering, and medicine.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

프로토콜

Frequently asked questions (FAQs) for KAPA SYBR® FAST One-Step qRT-PCR Kits.

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.