콘텐츠로 건너뛰기
Merck
모든 사진(3)

주요 문서

768650

Sigma-Aldrich

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)

greener alternative

5.0 wt. %, conductive screen printable ink

동의어(들):

Orgacon EL-P-5015, PEDOT:PSS, Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate)

로그인조직 및 계약 가격 보기


About This Item

MDL number:
UNSPSC 코드:
12352103
NACRES:
NA.23

Quality Level

양식

paste

환경친화적 대안 제품 특성

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

농도

5.0 wt. %

저항성

≤130 Ω/sq

pH

1.5-2.0

점도

≥50,000 mPa.s(20 °C)

환경친화적 대안 카테고리

저장 온도

20-25°C

유사한 제품을 찾으십니까? 방문 제품 비교 안내

일반 설명

A conducting polymer such as poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) anions (PEDOT/PSS) is widely used in various organic optoelectronic devices. PEDOT: PSS is a blend of cationic polythiopene derivative, doped with a polyanion. High electrical conductivity and good oxidation resistance of such polymers make it suitable for electromagnetic shielding and noise suppression. Thus, the polymer film was found to possess high transparency throughout the visible light spectrum and even into near IR and near UV regions, virtually 100% absorption from 900-2,000 nm. No absorption maximum from 400-800 nm. Impact of small electric and magnetic fields on the polymer was studied.
Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate (PEDOT:PSS) is a conductive polymer formed by electropolymerizing 3,4-ethylenedioxythiophene in a solution of poly(styrenesulfonate) (PSS). PEDOTs are doped with positive ions, while PSSs are doped with negative ions. The following are the properties that make PEDOT:PSS a viable polymer in organic electronics:
  • low band gap
  • good optical properties
  • high conductivity
  • low redox potential
  • easy processing
  • tunable film forming ability

We are committed to bringing you Greener Alternative Products, which adhere to one or more of the 12 Principles of Green Chemistry. This product is used in energy conversion and storage, thus has been enhanced for energy efficiency. Click here for more information.

애플리케이션

PEDOT:PSS can be used as an electrode material with a high mobility for charge carriers. It can be used for a wide range of energy based applications such as organic photovoltaics (OPV), dye sensitized solar cells (DSSCs), organic light emitting diodes (OLEDs), supercapacitors and other biomedical based sensors.
Screen Printing results on Autotype Autosta CT7 P77/55 screen with 300 mm/s
Curing temp. 130°C during 3 min
Screen-printable inks are based on conductive polymer PEDOT/PSS and enable patterning of transparent conductive structures from plain down to resolution of 100 microns on flexible and rigid substrates such as PET; PC; PMMA; PI; and glass. Screen-printing inks can achieve excellent characteristics such as flexibility and formability for electrodes of electroluminescent lamps; capacitive touch sensors; and membrane switches.
Virtually 100% absorption from 900-2,000 nm. No absorption maximum from 400-800 nm. Conductive polymer blend.

법적 정보

Product of Agfa-Gevaert N.V.
Orgacon is a trademark of Agfa-Gevaert N.V.

픽토그램

Corrosion

신호어

Danger

유해 및 위험 성명서

Hazard Classifications

Eye Dam. 1 - Skin Irrit. 2

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point (°F)

208.0 °F

Flash Point (°C)

97.77 °C


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion; 6-10 September 2010; Valencia; Spain; EU PVSEC Proceedings, 802-805 (2010)
Mechanism for dimethylformamide-treatment of poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) layer to enhance short circuit current of polymer solar cells.
Gong C, et al.
Solar Energy Materials and Solar Cells, 100(14), 115-119 (2012)
Functionalized graphene/poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells.
Yue G, et al.
Energy, 54(14), 315-321 (2013)
Stability of polypyrrole and poly (3, 4-ethylenedioxythiophene) for biosensor application.
Yamato H, et al.
Journal of Electroanalytical Chemistry, 397(1-2), 163-170 (1995)
Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes.
De Jong MP, et al.
Applied Physics Letters, 77(14), 2255-2257 (2000)

문서

A detailed article on conducting polymer materials for flexible organic photovoltaics (OPVs) applications.

Functional materials for printed electronics applications enable flexible displays, RFID tags, and biomedical sensors.

Advancements in bioelectronics, incorporating self-healing materials for wearable devices, and measuring bioelectric signals to assess physiological parameters.

Progress in Organic Thermoelectric Materials & Devices including high ZT values of >0.2 at room temperature by p-type (PEDOT:PSS) & n-type (Poly[Kx(Ni-ett)]) materials are discussed.

모두 보기

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.