콘텐츠로 건너뛰기
Merck
모든 사진(3)

Key Documents

791547

Sigma-Aldrich

Titania paste, transparent

동의어(들):

Greatcell Solar®, TiO2 paste

로그인조직 및 계약 가격 보기


About This Item

MDL number:
UNSPSC 코드:
12352103
PubChem Substance ID:
NACRES:
NA.23

설명

Crystal Structure: > 99% anatase (analysis carried out on starting material, prior to paste manufacture)

Quality Level

형태

paste (yellow)

농도

19.0 wt. %

평균 부품 크기

20 nm (active)

점도

40000-55000 mPa.s(20 °C) (Analysis carried out at 20°C with 20mm 4 degree cone/plate; 40 s-1))

InChI

1S/2O.Ti

InChI key

GWEVSGVZZGPLCZ-UHFFFAOYSA-N

일반 설명

Transparent titania (TiO2) paste is a visual range transparent paste that has a large surface area to volume ratio. The average diameter of the TiO2 nanoparticle within the paste is 20nm and the transparent sintered films are around 6-7 μm thick per printed layer.

애플리케이션

TiO2 paste forms a screen printed film which is majorly used as a conduction band on indium tin oxide (ITO) or fluorine doped tin oxide (FTO) based substrates for dye sensitized solar cells and for major photovoltaic based applications.
Use Transparent Titania Paste in applications that require a transparent sintered titania film with a large surface/volume ratio.

Transparent Titania Paste is formulated to yield sintered film thicknesses of 6-7μm when screen printed with a 43T mesh. Transparent Titania Paste has highly dispersed and stable anatase nanoparticles.

It is optimised for screen printing using a synthetic 43T mesh screen (or similar). After drying; this paste must be fired at or above 500°C. This results in a transparent sintered layer; with a film thickness of approximately 6-7μm for one printed layer and ~12μm for two printed layers; when using a 43T mesh screen.

The paste exhibits optimal rheological properties that provide good surface uniformity and contains organic binders specially formulated to provide versatile porosity suitable for a range of dye/electrolyte systems.

Storage: Store in the dark at 20°C

법적 정보

Product of Greatcell Solar Materials Pty Ltd.Greatcell Solar is a registered trademark of Greatcell Solar Materials Pty Ltd.
Greatcell Solar is a registered trademark of Greatcell Solar

픽토그램

Exclamation mark

신호어

Warning

유해 및 위험 성명서

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2

Storage Class Code

10 - Combustible liquids

WGK

WGK 1

Flash Point (°F)

195.8 °F - closed cup

Flash Point (°C)

91 °C - closed cup


시험 성적서(COA)

제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

이미 열람한 고객

Slide 1 of 3

1 of 3

Studies on the efficiency enhancement of co-sensitized, transparent DSSCs by employment of core-shell-shell gold nanorods.
Zani L, et al.
Inorgorganica Chimica Acta, 470(1), 407-415 (2018)
Synthesis of active absorber layer by dip-coating method for perovskite solar cell.
Singh R, at al.
Journal of Molecular Structure, 1158(1), 229-233 (2018)
Aggregated mesoporous nanoparticles for high surface area light scattering layer TiO2 photoanodes in Dye-sensitized Solar Cells.
Al-Attafi K, et al.
Scientific Reports, 7(1), 10341-10341 (2017)
Heather Vanselous et al.
The journal of physical chemistry letters, 8(4), 825-830 (2017-02-06)
Molecular monolayers exhibit structural and dynamical properties that are different from their bulk counterparts due to their interaction with the substrate. Extracting these distinct properties is crucial for a better understanding of processes such as heterogeneous catalysis and interfacial charge
Improving the morphology of the perovskite absorber layer in hybrid organic/inorganic halide perovskite MAPbI3 solar cells.
Ogundana IJ and Foo SY
Journal of Solar Energy, 2017(1), 10341-10341 (2017)

문서

Professor Shinar highlights low-cost, disposable sensor configurations in organic and hybrid electronics for healthcare applications.

Few Monolayer Atomic Layer Deposition (ALD) on Surfaces and Interfaces for Energy Applications

Dye-sensitized solar cells (DSCs) are 3rd generation solar cells combining the promise of high efficiency with low production costs.

While dye sensitization as the basis for color photography has been accepted for a very long time,1 attempts to use this principle for the conversion of solar light to electricity generally had resulted only in very low photocurrents, below 100 nA/cm

모두 보기

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.