콘텐츠로 건너뛰기
Merck
모든 사진(2)

주요 문서

933988

Sigma-Aldrich

1,1,2,2-Tetrafluoroethyl 2,2,2-trifluoroethyl ether

greener alternative

≥99.5%, anhydrous, acid <=100 ppm, battery grade

동의어(들):

1,1,2,2-tetrafluoro-1-(2,2,2-trifluoroethoxy)ethane, HFE-347, TFTFE

로그인조직 및 계약 가격 보기


About This Item

실험식(Hill 표기법):
C4H3F7O
CAS Number:
Molecular Weight:
200.05
효소 위원회 번호:
609-858-6
MDL number:
UNSPSC 코드:
12352100
PubChem Substance ID:
NACRES:
NA.21

Grade

battery grade

Quality Level

분석

≥99.5%

양식

liquid

환경친화적 대안 제품 특성

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

불순물

≤100 ppm acid (HF)
≤250 ppm H2O

비휘발성 잔류물 (NVR)

≤10 ppm

bp

56 °C

mp

-91 °C (lit.)

density

1.49 g/mL

응용 분야

battery manufacturing

환경친화적 대안 카테고리

SMILES string

FC(F)(F)COC(F)(F)C(F)F

InChI

1S/C4H3F7O/c5-2(6)4(10,11)12-1-3(7,8)9/h2H,1H2

InChI key

CWIFAKBLLXGZIC-UHFFFAOYSA-N

일반 설명

1,1,2,2-Tetrafluoroethyl 2,2,2-trifluoroethyl ether (TFTFE) is a fluorinated ether that finds extensive use as an electrolyte solvent and diluent in various battery technologies. TFTFE has a low viscosity, low freezing point (-94 °C lit.), low dielectric constant (~6.7), and high electrochemical stability, making it an ideal candidate for use in lithium-ion batteries, lithium-sulfur batteries, and other battery systems. TFTFE is miscible with many polar organic solvents, including carbonates typically used in battery electrolytes. With a minimum purity level of 99% and free from acid impurities, our TFTFE is a reliable and safe solution for critical battery applications.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more information.

애플리케이션

Battery-grade 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether (TFTFE) is a versatile co-solvent and additive for various battery systems. In lithium-metal batteries, TFTFE helps to suppress dendrites without raising the interfacial impedance. It also supports the stable cycling of NMC and lithium metal phosphate cathodes by forming a highly fluorinated interphase, which inhibits oxidation and transition metal dissolution. Because of its stability and low viscosity, TFTFE is commonly added in localized high-concentration electrolytes (LHCE) as a diluent and flame-retardant. In lithium-sulfur batteries, TFTFE plays a key role as both a polysulfide-restraining solvent and a film-forming agent, addressing the polysulfide shuttle (PSS) effect and improving battery performance. Additionally, TFTFE plays a critical role in cell systems with solvate ionic liquids (SIL) as an ionic conduction-enhancing ingredient, particularly for high-rate cycle environments. Our high-purity, anhydrous TFTFE is an ideal battery-grade additive for advanced battery technology.

픽토그램

Exclamation mark

신호어

Warning

유해 및 위험 성명서

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Solvate ionic liquid electrolyte with 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether as a support solvent for advanced lithium?sulfur batteries
Lu, Hai, et al.
Royal Society of Chemistry Advances, 6, 18186-18190 (2016)
Synthesis and electrochemical properties of partially fluorinated ether solvents for lithiumsingle bondsulfur battery electrolytes
Yue Zheng
Journal of Power Sources, 401, 271-277 (2018)
Jun-Fan Ding et al.
Angewandte Chemie (International ed. in English), 60(20), 11442-11447 (2021-03-04)
Lithium (Li) metal anodes hold great promise for next-generation high-energy-density batteries, while the insufficient fundamental understanding of the complex solid electrolyte interphase (SEI) is the major obstacle for the full demonstration of their potential in working batteries. The characteristics of
Xiulin Fan et al.
Nature nanotechnology, 13(8), 715-722 (2018-07-18)
Rechargeable Li-metal batteries using high-voltage cathodes can deliver the highest possible energy densities among all electrochemistries. However, the notorious reactivity of metallic lithium as well as the catalytic nature of high-voltage cathode materials largely prevents their practical application. Here, we
Application of Partially Fluorinated Ether for Improving Performance of Lithium/Sulfur Batteries
Lu, Hai, et al.
Journal of the Electrochemical Society, 162, A1460-A1460 (2015)

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.