추천 제품
Quality Level
분석
95%
양식
solid
SMILES string
Nc1ccccc1S(O)(=O)=O
InChI
1S/C6H7NO3S/c7-5-3-1-2-4-6(5)11(8,9)10/h1-4H,7H2,(H,8,9,10)
InChI key
ZMCHBSMFKQYNKA-UHFFFAOYSA-N
유사한 제품을 찾으십니까? 방문 제품 비교 안내
신호어
Danger
유해 및 위험 성명서
Hazard Classifications
Skin Corr. 1B
Storage Class Code
8A - Combustible corrosive hazardous materials
WGK
WGK 3
Flash Point (°F)
Not applicable
Flash Point (°C)
Not applicable
개인 보호 장비
Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges
이미 열람한 고객
T Thurnheer et al.
Biodegradation, 1(1), 55-64 (1990-01-01)
Alcaligenes sp. strain O-1 grew with benzene sulfonate (BS) as sole carbon source for growth with either NH4+ or NH4+ plus orthanilate (2-aminobenzene sulfonate, OS) as the source(s) of nitrogen. The intracellular desulfonative enzyme did not degrade 3- or 4-aminobenzene
Po-Hsin Wang et al.
Nanomaterials (Basel, Switzerland), 8(4) (2018-04-05)
In this work, we electrochemically deposited self-doped polyanilines (SPANI) on the surface of carbon-nanoparticle (CNP) film, enhancing the superficial faradic reactions in supercapacitors and thus improving their performance. SPANI was electrodeposited on the CNP-film employing electropolymerization of aniline (AN) and
J Mampel et al.
Microbiology (Reading, England), 145 ( Pt 11), 3255-3264 (1999-12-10)
Growth of Alcaligenes sp. strain O-1 with 2-aminobenzenesulfonate (ABS; orthanilate) as sole source of carbon and energy requires expression of the soluble, multicomponent 2-aminobenzenesulfonate 2,3-dioxygenase system (deaminating) (ABSDOS) which is plasmid-encoded. ABSDOS was separated by anion-exchange chromatography to yield a
F Junker et al.
The Biochemical journal, 300 ( Pt 2), 429-436 (1994-06-01)
2-Aminobenzenesulphonic acid (2AS) is degraded by Alcaligenes sp. strain O-1 via a previously detected but unidentified intermediate. A mutant of strain O-1 was found to excrete this intermediate, which was isolated and identified by m.s., 1H- and 13C-n.m.r. as 3-sulphocatechol
Xin-Gui Li et al.
Journal of combinatorial chemistry, 8(2), 174-183 (2006-03-15)
A unique strategy for synthesis of narrowly distributed and inherently self-stabilized copolymer nanoparticles by a simple emulsifier-free polymerization from orthanilic acid and aniline was developed. The polymerization yield, electrical conductivity, size, and its distribution of the nanoparticles could be simultaneously
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.