콘텐츠로 건너뛰기
Merck
모든 사진(1)

주요 문서

R95DD

Sigma-Aldrich

Rhamnolipids

greener alternative

95% (Di-Rhamnolipid dominant)

동의어(들):

Rhamnolipids

로그인조직 및 계약 가격 보기


About This Item

UNSPSC 코드:
12352211
NACRES:
NA.22

product name

Rhamnolipids, 95% (Di-Rhamnolipid dominant),

생물학적 소스

Pseudomonas aeruginosa

Quality Level

형태

solid/granular

환경친화적 대안 제품 특성

Design for Degradation: Greener alternative product characteristics
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

환경친화적 대안 카테고리

배송 상태

ambient

저장 온도

room temp

유사한 제품을 찾으십니까? 방문 제품 비교 안내

일반 설명

Rhamnolipid biosurfactants are glycolipids containing L-rhamnose and ß-hydroxyl fatty acids, with amphiphilic properties (both hydrophilic and hydrophobic). This rhamnolipid product has been purified from Pseudomonas aeruginosa and contains a mixture of rhamnolipids with fatty acids of varying tail length. They are highly biodegradable, non-toxic, and renewable. Functional roles include bioactive, surfactant and emulsifier. Rhamnolipids provide good detergency/foaming/wetting, stable microemulsion formation, and solubility under high alkalinity. They are mild with skin-friendly attributes. Surfactant and emulsion properties of rhamnolipids include reducing the surface tension of water to 25 to 40 mN/m, having a CMC of 5-380 mg/L, and decreasing the interfacial tension of oil and water to <1 dyne/cm. Rhamnolipid biosurfactants are superior to synthetic surfactants for several reasons: their CMC is 10-100 times lower than that of traditional chemical surfactants (meaning much less material is required to achieve reductions in surface tension/interfacial tension); they are easily biodegradable with very low toxicity (having higher EC50 values); they are not as affected by temperature, pH and salinity; and they are sustainably produced.

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for hydrocarbon degradation. For more information see the paper Environmental applications of biosurfacants: recent advances, and the many other articles available at: AGAE Technologies

애플리케이션

Rhamnolipids can be used in pharmaceuticals, cosmeceuticals, cosmetics, personal products, environmental bioremediation, the petroleum industry, household cleaners, food and beverage processing, agriculture and horticulture, therapeutics, nanotechnology, the polymer industry, cryo-protectants, the mining industry, biofuels, ethanol production, microbial fuel cells, protein research, and neural stem cell studies.

법적 정보

Product of AGAE Technologies

Storage Class Code

11 - Combustible Solids

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable


시험 성적서(COA)

제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Roger Marchant et al.
Biotechnology letters, 34(9), 1597-1605 (2012-05-24)
Glycolipid biosurfactants produced by bacteria and yeasts provide significant opportunities to replace chemical surfactants with sustainable biologically produced alternatives in bulk commercial products such as laundry detergents and surface cleaners. Sophorolipids are already available in sufficient yield to make their
[Factor VIII inhibitor postpartum].
I Ohkubo et al.
[Rinsho ketsueki] The Japanese journal of clinical hematology, 27(9), 1596-1602 (1986-09-01)
Magdalena Pacwa-Płociniczak et al.
International journal of molecular sciences, 12(1), 633-654 (2011-02-23)
Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as hydrocarbons and metals. An alternative and eco-friendly method of remediation technology of environments contaminated with
Markus Michael Müller et al.
Journal of biotechnology, 162(4), 366-380 (2012-06-26)
The demand for bio-based processes and materials in the petrochemical industry has significantly increased during the last decade because of the expected running out of petroleum. This trend can be ascribed to three main causes: (1) the increased use of
Metabolism of isoprenaline in the intestine.
C F George et al.
The Journal of pharmacy and pharmacology, 26(4), 265-267 (1974-04-01)

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.