MilliporeSigma
All Photos(2)

Documents

326046

Sigma-Aldrich

Yttrium(III) acetate hydrate

99.9% metals basis

Sign Into View Organizational & Contract Pricing

Select a Size

Change View

Select a Size

Change View
Synonym(s):
Yttrium triacetate
Linear Formula:
(CH3CO2)3Y · xH2O
CAS Number:
Molecular Weight:
266.04 (anhydrous basis)
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Assay

99.9% metals basis

form

powder

reaction suitability

core: yttrium
reagent type: catalyst

SMILES string

O.CC(=O)O[Y](OC(C)=O)OC(C)=O

InChI

1S/3C2H4O2.H2O.Y/c3*1-2(3)4;;/h3*1H3,(H,3,4);1H2;/q;;;;+3/p-3

InChI key

JRKVGRAQLBXGQB-UHFFFAOYSA-K

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
326011217239464317
form

powder

form

powder and chunks

form

powder

form

powder

reaction suitability

core: yttrium

reaction suitability

core: ytterbium, reagent type: catalyst

reaction suitability

-

reaction suitability

-

Quality Level

100

Quality Level

100

Quality Level

100

Quality Level

100

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Slide 1 of 2

1 of 2

Daifeng Li et al.
Advanced science (Weinheim, Baden-Wurttemberg, Germany), 6(23), 1902042-1902042 (2019-12-14)
Recently, various second near-infrared window (NIR-II, 1000-1700 nm) fluorophores have been synthesized for in vivo imaging with nonradiation, high resolution, and low autofluorescence. However, most of the NIR-II fluorophores, especially inorganic nanoprobes, are mainly retained in the reticuloendothelial system (RES)
Qianqian Su et al.
Frontiers in chemistry, 8, 836-836 (2020-10-24)
Lanthanide-based upconversion nanoparticles can convert low-energy excitation to high-energy emission. The self-assembled upconversion nanoparticles with unique structures have considerable promise in sensors and optical devices due to intriguing properties. However, the assembly of isotropic nanocrystals into anisotropic structures is a
Wei Kong et al.
Inorganic chemistry, 56(2), 872-877 (2017-01-06)
Lanthanide-doped upconversion nanoparticles with a suitable surface coating are appealing for biomedical applications. Because high-quality upconversion nanoparticles are typically prepared in an organic solvent and passivated by hydrophobic oleate ligands, a convenient and reliable method for the surface modification of
Shihua Li et al.
ACS nano, 13(2), 2103-2113 (2019-01-16)
The exploitation of gas therapy platforms holds great promise as a "green" approach for selective cancer therapy, however, it is often associated with some challenges, such as uncontrolled or insufficient gas generation and unclear therapeutic mechanisms. In this work, a
Syue-Liang Lin et al.
Nanomaterials (Basel, Switzerland), 10(10) (2020-10-21)
Several robust titania (TiO2) coated core/multishell trivalent lanthanide (Ln) upconversion nanoparticles (UCNPs) hybrid architecture designs have been reported for use in photodynamic therapy (PDT) against cancer, utilizing the near-infrared (NIR) excited energy down-shifting and up-conversion chain of Nd3+ (λ793-808 nm)

Articles

Advanced Inorganic Materials for Solid State Lighting

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service