MilliporeSigma
All Photos(1)

Documents

594199

Sigma-Aldrich

Poly[(p-phenylenevinylene)-alt-(2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene)]

Sign Into View Organizational & Contract Pricing

Linear Formula:
(C25H32O2)n
CAS Number:
MDL number:
NACRES:
NA.23

form

solid

solubility

chloroform: soluble
organic solvents: soluble

fluorescence

λex 451 nm; λem 517 nm in chloroform

Related Categories

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
541443555169659223
solubility

chloroform: soluble

solubility

-

solubility

chloroform: soluble 2 wt. %

solubility

H2O: soluble

fluorescence

λex 451 nm; λem 517 nm in chloroform

fluorescence

λex 493 nm; λem 554 nm in toluene

fluorescence

λex 405 nm; λem 452 nm in chloroform

fluorescence

λex 322 nm; λem 424 nm in H2O, λex 363 nm; λem 410 nm in H2O(lit.)

Quality Level

100

Quality Level

100

Quality Level

100

Quality Level

100

General description

Poly[(p-phenylenevinylene)-alt-(2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene)] (p-PMEH-PPV) is a conducting polymer that can be used as an active material in the development of optoelectronic devices. It forms a conjugated-nonconjugated multiblock copolymer which can be used as an electroluminescent polymeric material. It can be potentially operated at low voltages with quick responsive and defined displays.

Application

p-PMEH-PPV can be used as a blue EL polymer for the fabrication of semiconductor devices such as organic light emitting diodes (OLEDs), thin film transistors (TFTs), photovoltaic cells and chemical sensors.

Features and Benefits

Light emitting semiconjugated alternating copolymer.
Light emission blue shifted relative to that for MEH-PPV by introduction of unsubstituted phenylene units with para linkage in the polymer main chain, shortening the effective conjugation length of the polymer.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

High-efficiency poly (p-phenylenevinylene)-based copolymers containing an oxadiazole pendant group for light-emitting diodes
Jin S, et al.
Journal of the American Chemical Society, 126(8), 2474-2480 (2004)
Blue electroluminescent polymers: control of conjugation length by kink linkages and substituents in the poly (p-phenylenevinylene)-related copolymers
Ahn T, et al.
Macromolecules, 32(10), 3279-3285 (1999)
Synthesis and photo-induced charge separation of confined conjugation length phenylene vinylene-based polymers
Tan TAT, et al.
Polym. Chem., 4(20), 5305-5309 (2013)
A molecular photosensor based on photoswitching of charge carrier mobility
Macromolecular Symposia, 247(1), 318-325 (2007)

Articles

LEPs enable a wide range of important applications including sensors, flexible LED displays and lighting devices, optical pump lasers, and potentially polymer diode lasers.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service