Skip to Content
MilliporeSigma
All Photos(3)

Documents

702471

Sigma-Aldrich

PTAA

greener alternative

a poly(triaryl amine) semiconductor

Sign Into View Organizational & Contract Pricing

Synonym(s):
Poly(triaryl amine), Poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine]
Linear Formula:
[C6H4N(C6H2(CH3)3)C6H4]n
CAS Number:
UNSPSC Code:
32111503
NACRES:
NA.23

Quality Level

form

solid

mol wt

average Mn 7,000-10,000 (GPC)

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

mp

>400 °C
>400 °C

Mw/Mn

2‑2.2

application(s)

battery manufacturing
semiconductor

greener alternative category

semiconductor properties

P-type (mobility=10−3 - 10−2 cm2/V·s)

General description

PTAA, poly(triaryl amine), semiconductor is an organic p-type semiconductor with hole mobilities of 10−3 up to 10−2 cm2 V−1 s−1 which results in a high carrier mobility. It is a stable glassy polymer and has good ionization potential for thick film diodes.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product belongs to Enabling category of greener alternatives thus aligns with "Design for energy efficency". Hole transport organic materials allow perfect energy level alignment with the absorber layer and therefore efficient charge collection, are prone to degradation in ambient conditions.Click here for more information.

Application

PTAA can be coated as a substrate material which is used for the transportation of hole in the fabrication of many devices like perovskite solar cells, polymeric light emitting diodes and organic field effect transistors.

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 5

1 of 5

Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.
Jeon NJ, et al.
Nature Materials, 13(9), 897-897 (2014)
Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells.
Lefrancois A, et al.
Scientific Reports, 5(9), 7768-7768 (2015)
M.L. Chabinyc, L.H. Jimison, J. Rivnay, A. Salleo
Mrs Bulletin, 33, 683-683 (2008)
Characterization of thick film poly (triarylamine) semiconductor diodes for direct x-ray detection.
Intaniwet A, et al.
Journal of Applied Physics, 106(6), 064513-064513 (2009)
Enhanced infrared spectroscopy of organic field effect transistor (OFET) materials
Sendner M and Pucci A
AIP Conference Proceedings, 1646(1), 115-121 (2015)

Articles

Polytriarylamine Semiconductors

The development of high-performance conjugated organic molecules and polymers has received widespread attention in industrial and academic research.

Professor Shinar highlights low-cost, disposable sensor configurations in organic and hybrid electronics for healthcare applications.

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service