Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

724858

Sigma-Aldrich

Poly(N-isopropylacrylamide-co-methacrylic acid)

methacrylic acid 10 mol %, Mn 60,000

Synonym(s):

Poly(NIPAM-co-MAA), Polyacrylamide, functionalized polyNIPAM, functionalized polyacrylamide, polyNIPAM

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(C6H11NO)m (C4H6O2)n
CAS Number:
MDL number:
UNSPSC Code:
12162002
NACRES:
NA.23

form

solid

Quality Level

mol wt

Mn 60,000

composition

methacrylic acid, 10 mol %

mp

>300 °C

Mw/Mn

≤2.5

SMILES string

N(C(C)C)C(=O)C=C.OC(=O)C(=C)C

InChI

1S/C6H11NO.C4H6O2/c1-4-6(8)7-5(2)3;1-3(2)4(5)6/h4-5H,1H2,2-3H3,(H,7,8);1H2,2H3,(H,5,6)

InChI key

BGJOTKHBFYMJST-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

Intelligent Swelling/Collapsing copolymer that can be used as a temperature- and pH-sensitive materials.

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

J Taillefer et al.
Journal of pharmaceutical sciences, 89(1), 52-62 (2000-02-09)
pH-responsive polymeric micelles (PM) consisting of random copolymers of N-isopropylacrylamide (NIPA), methacrylic acid (MAA), and octadecyl acrylate (ODA) were prepared and characterized. The critical aggregation concentration, as determined by a fluorescence probe technique, was approximately 10 mg/L in water and
Ester Chiessi et al.
The journal of physical chemistry. B, 114(25), 8301-8312 (2010-06-05)
Polymer microgels of poly(vinyl alcohol)/poly(methacrylate-co-N-isopropyl acrylamide) showed a thermoresponsive behavior, suitable for application in drug delivery (Biomacromolecules 2009, 10, 1589). In this work molecular dynamics (MD) methods were used to explain which structural aspects are determining for thermoresponsivity and how
Chun-Liang Lo et al.
Journal of controlled release : official journal of the Controlled Release Society, 104(3), 477-488 (2005-05-25)
New thermo-responsive, pH-responsive, and biodegradable nanoparticles comprised of poly(D,L-lactide)-graft-poly(N-isopropyl acrylamide-co-methacrylic acid) (PLA-g-P(NIPAm-co-MAA)) were developed by grafting biodegradable poly(D,L-lactide) onto N-isopropyl acrylamide and methacrylic acid. A core-shell type nano-structure was formed with a hydrophilic outer shell and a hydrophobic inner core
Kai Zhang et al.
Biomaterials, 25(22), 5281-5291 (2004-04-28)
This work was focused on the investigation of temperature and pH-responsive polymeric composite membranes and their permeability to proteins and peptides in response to environmental stimuli. The composite membranes were prepared from nanoparticles of poly(N-isopropylacrylamide-co-methacrylic acid) of various NIPAAm:MAA ratios
Tomonori Hayashi et al.
The Analyst, 129(5), 421-427 (2004-04-30)
We synthesized a temperature-responsive polymer, N-(isopropylacrylamide)-methacrylic acid copolymer, to which poly-l-lysine was introduced. The synthesized polymer as well as the parent polymer showed reversible soluble-insoluble changes in response to temperature changes across the lower critical solution temperature at 32 degree

Articles

Poly(N-isopropylacrylamide), or PNIPAM, is a stimuli-responsive polymer that responds to changes in pH and temperature and has a LCST around 32 C.

Tissue engineering has become a key therapeutic tool in the treatment of damaged or diseased organs and tissues, such as blood vessels and urinary bladders.

By altering the physicochemical properties, smart or intelligent drug delivery systems can be designed to deliver therapeutic molecules on-demand. Learn more about the application of stimuli-responsive materials in drug delivery.

Professor Mitsuhiro Ebara provides insights on several types of smart nanofiber mesh systems that have been explored for different drug delivery purposes.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service