750034
Hexylphosphonic acid
95%
Synonym(s):
n-Hexylphosphonic acid
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Empirical Formula (Hill Notation):
C6H15O3P
CAS Number:
Molecular Weight:
166.16
MDL number:
UNSPSC Code:
12352300
PubChem Substance ID:
NACRES:
NA.23
Recommended Products
Quality Level
assay
95%
form
solid
mp
97-103 °C
SMILES string
CCCCCCP(O)(O)=O
InChI
1S/C6H15O3P/c1-2-3-4-5-6-10(7,8)9/h2-6H2,1H3,(H2,7,8,9)
InChI key
GJWAEWLHSDGBGG-UHFFFAOYSA-N
General description
Hexylphosphonic acid(HPA) is a phosphonic acid derivative that can be used as a capping agent and a surfactant.
Application
HPA may be used as a surfactant to disperse multi-walled carbon nanotubes(MWCNTs). It can be modify the surface of barium titanate(BaTiO3) which can be used in the development of 3D-printable dielectric paste.
signalword
Warning
hcodes
Hazard Classifications
Eye Irrit. 2 - Skin Irrit. 2
Storage Class
11 - Combustible Solids
wgk_germany
WGK 3
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Viscoelastic properties of a 3D-Printable high-dielectric paste with surface-modified BaTiO3.
Park JY, et al.
Composites Science and Technology, 159(13), 225-231 (2018)
Feng Li et al.
Journal of colloid and interface science, 549, 33-41 (2019-04-25)
The severe interface charge recombination caused by the large energy difference between perovskite material and carbon electrode significantly limits the further performance improvement of the all-inorganic perovskite solar cells (PSCs). We apply innovatively multilayer of quaternary Ag-In-Ga-S (AIGS) quantum dots
Aqueous dispersion of multiwall carbon nanotubes with phosphonic acid derivatives.
Oueiny C, et al.
Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 493(13), 41-51 (2016)
Towards new oligomesogenic phosphonic acids as stabilizers of nanoparticles colloids in nematic liquid crystals.
Prodanov MF, et al.
Synlett, 26(13), 1905-1910 (2015)
Adam Roberge et al.
The journal of physical chemistry letters, 8(17), 4055-4060 (2017-08-12)
Recently the addition of M
Articles
Thin, lightweight, and flexible electronic devices meet widespread demand for scalable, portable, and robust technology.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service