MilliporeSigma
All Photos(2)

Documents

753424

Sigma-Aldrich

Magnesium bis(trifluoromethanesulfonimide)

Sign Into View Organizational & Contract Pricing

Synonym(s):
Magnesium bis(ditriflimide)
Empirical Formula (Hill Notation):
C4F12MgN2O8S4
CAS Number:
Molecular Weight:
584.60
MDL number:
PubChem Substance ID:
NACRES:
NA.22

form

powder

mp

>200 °C

SMILES string

FC(F)(F)S(=O)(=O)N([Mg]N(S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F

InChI

1S/2C2F6NO4S2.Mg/c2*3-1(4,5)14(10,11)9-15(12,13)2(6,7)8;/q2*-1;+2

InChI key

DMFBPGIDUUNBRU-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
464635230391M0250
Magnesium sulfate heptahydrate ACS reagent, ≥98%

Sigma-Aldrich

230391

Magnesium sulfate heptahydrate

Essential Grade
mp

>200 °C

mp

46-57 °C (lit.)

mp

-

mp

-

Quality Level

100

Quality Level

200

Quality Level

200

Quality Level

200

General description

Magnesium bis(trifluoromethanesulfonimide) (Mg(TFSI)2) is a strong magnesium Lewis acid. It is used as a catalyst in organic synthesis. For instance, it is used in the synthesis of dihydropyrazoles by reaction of nitrilimines with alkenes. Additionally, Mg(TFSI)2 salt is also useful for ionic conductivity studies, transference number measurements, and electrochemical properties of gel polymer electrolyte (GPE) systems.
Magnesium bis(trifluoromethanesulfonimide), also known as magnesium triflimide, can be used as an inorganic catalyst in various organic reactions, including acetylation of phenols and alcohols, aminolysis of lactones with amines, [2 + 2] cycloadditions of siloxy-alkynes with carbonyl compounds, cycloisomerization of 1,6-dienes, Friedel-Crafts acylation, and for the synthesis of coumarins.

Pictograms

Corrosion

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

Skin Corr. 1B

Storage Class Code

8A - Combustible, corrosive hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Magnesium bis (trifluoromethane) sulfonimide: An efficient catalyst for the synthesis of coumarins under solvent-free conditions
Wang H
Monatshefte fur Chemie / Chemical Monthly, 144, 411-414 (2013)
Magnesium Bis (trifluoromethylsulfonyl) imide
Selvakumar S, et al.
eEROS (Encyclopedia of Reagents for Organic Synthesis) (2001)
Toshihiko Mandai et al.
Physical chemistry chemical physics : PCCP, 21(23), 12100-12111 (2019-04-26)
To achieve a sustainable-energy society in the future, next-generation highly efficient energy storage technologies, particularly those based on multivalent metal negative electrodes, are urgently required to be developed. Magnesium rechargeable batteries (MRBs) are promising options owing to the many advantageous

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service