Skip to Content
MilliporeSigma
All Photos(2)

Key Documents

760757

Sigma-Aldrich

Azide-fluor 545

Synonym(s):

5-Carboxytetramethylrhodamine-azide, TAMRA PEG azide., TAMRA-azide, Tetramethylrhodamine

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C33H39N6O7
Molecular Weight:
631.70
UNSPSC Code:
12171501
NACRES:
NA.22
form:
solid

form

solid

Quality Level

reaction suitability

reaction type: click chemistry

storage temp.

−20°C

Application

Azide-fluor 545 can be used to label alkyne/cyclooctyne containing molecules or biomolecules by azide-alkyne click chemistry.
Can be used to detect or label alkyne- or cyclooctyne-containing molecules or biomolecules by fluorescence spectroscopy following an azide-alkyne click chemistry reaction.

Spectral Properties: Abs/Em = 546/565 nm

related product

Product No.
Description
Pricing

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 1

1 of 1

Genetic Encoding of a Bicyclo [6.1. 0] nonyne-Charged Amino Acid Enables Fast Cellular Protein Imaging by Metal-Free Ligation.
Borrmann A, et al.
Chembiochem, 13(14), 2094-2099 (2012)
Engineering exosomes as refined biological nanoplatforms for drug delivery.
Luan X, et al.
Acta Pharmacologica Sinica, 38(6), 754-754 (2017)
Post isolation modification of exosomes for nanomedicine applications.
Hood JL.
Nanomedicine (London, England), 11(13), 1745-1756 (2016)
Surface functionalization of exosomes using click chemistry.
Smyth T, et al.
Bioconjugate Chemistry, 25(10), 1777-1784 (2014)
A Bioorthogonal Dual-Labeling Strategy to Unravel Lignification Dynamics in Plants.
Lion C, et al.
Cell Chemical Biology, 24(3), 326-338 (2017)

Articles

Explore the principles and applications of click chemistry in drug discovery, highlighting efficient reactions that streamline the synthesis of bioactive compounds.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service