MilliporeSigma
All Photos(1)

Documents

790346

Sigma-Aldrich

ITO

30 nm (SEM)

Sign Into View Organizational & Contract Pricing

Synonym(s):
Indium tin oxide, ITO
CAS Number:
MDL number:
PubChem Substance ID:

form

nanopowder

composition

In2O3, 90%
SnO2, 10%

particle size

30 nm (SEM)

mp

1910 °C (lit.)

density

1.2 g/mL at 25 °C (lit.)

SMILES string

O=[SnH2].O=[In]O[In]=O.O=[In]O[In]=O.O=[In]O[In]=O.O=[In]O[In]=O.O=[In]O[In]=O.O=[In]O[In]=O.O=[In]O[In]=O.O=[In]O[In]=O.O=[In]O[In]=O

InChI

1S/2In.5O.Sn

InChI key

LNNWKAUHKIHCKO-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
544876747939494682
vibrant-m

790346

ITO

vibrant-m

544876

Indium tin oxide

vibrant-m

747939

Indium tin oxide

vibrant-m

494682

Indium tin oxide

form

nanopowder

form

nanopowder

form

dispersion

form

powder

mp

1910 °C (lit.)

mp

1910 °C (lit.)

mp

1910 °C (lit.)

mp

1910 °C (lit.)

density

1.2 g/mL at 25 °C (lit.)

density

1.2 g/mL at 25 °C (lit.)

density

1.1682 g/mL at 25 °C, 1.2 g/mL at 25 °C (lit.)

density

1.2 g/mL at 25 °C (lit.)

composition

In2O3, 90%

composition

In2O3, 90% , SnO2, 10%

composition

In2O3, 90% , SnO2, 10%

composition

In2O3, 90% , SnO2, 10%

Quality Level

100

Quality Level

100

Quality Level

100

Quality Level

100

Application

Indium Tin oxide nanoparticles have been investigated for use in the following:
  • transparent electrodes(1)
  • the formation of conductive paper and organic contaminants (2)
  • the formation of transparent conductive oxide films and magnetic nanocomposites(3)
  • electrochromic materials and as well as in biomedical applications(4)

Storage Class

13 - Non Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Progress in Electrochromics and Thermochromics: Two New Applications Involving ITO Nanoparticles.
Li S, et al.
Society of Vacuum Coaters; 55th Annual Technical Conference Proceedings, 41-46 (2012)
Conductive paper fabricated by layer-by-layer assembly of polyelectrolytes and ITO nanoparticles.
Peng CQ, et al.
Nanotechnology, 19(50) (2008)
Characterization of dip-coated ITO films derived from nanoparticles synthesized by?low-pressure spray pyrolysis.
Ogi T, et al.
Journal of Nanoparticle Research, 8(3-4), 343-350 (2006)
Generation of transparent conductive electrodes by laser consolidation of LIFT printed ITO nanoparticle layers.
Baum M, et al.
Applied Physics. A, Materials Science & Processing, 111(3), 799-805 (2013)

Articles

Electronically, it behaves as a wide band gap (3.2 eV) semiconductor and exhibits memristor properties.2 Optically, TiO2 has high opacity with a very high refractive index3 (>2.4), and it exhibits strong absorbance in the UV range.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service