MilliporeSigma
All Photos(3)

Documents

805874

Sigma-Aldrich

n-Butylammonium iodide

greener alternative
Sign Into View Organizational & Contract Pricing

Synonym(s):
1-Butanaminium iodide, Butylamine hydroiodide, Butylammonium iodide, Greatcell Solar®
Empirical Formula (Hill Notation):
C4H12IN
CAS Number:
Molecular Weight:
201.05
MDL number:
PubChem Substance ID:
NACRES:
NA.23

assay

98%

Quality Level

form

powder

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

mp

173 °C (exp.)

greener alternative category

SMILES string

CCCCN.I

InChI

1S/C4H11N.HI/c1-2-3-4-5;/h2-5H2,1H3;1H

InChI key

CALQKRVFTWDYDG-UHFFFAOYSA-N

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
806048806390805823
n-Butylammonium iodide

805874

n-Butylammonium iodide

Formamidinium iodide

806048

Formamidinium iodide

Methylammonium iodide

806390

Methylammonium iodide

Ethylammonium Iodide

805823

Ethylammonium Iodide

mp

173 °C (exp.)

mp

335 °C

mp

145 °C

mp

193 °C

assay

98%

assay

≥98% (H-NMR)

assay

-

assay

98%

form

powder

form

powder

form

powder

form

powder

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

greener alternative category

, Enabling

greener alternative category

, Enabling

greener alternative category

, Enabling

greener alternative category

Enabling,

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more details.

Application

n-Butylammonium iodide (BAI) can be used as an additive that facilitates an improvement in the efficiency and stability of perovskite solar cells (PSCs). It can also be used as an organic ligand in the formation of organic-inorganic perovskites for light-emitting diodes (LEDs).
The iodide and bromide based alkylated halides find applications as precursors for fabrication of perovskites for photovoltaic applications.

Legal Information

Product of Greatcell Solar Materials Pty Ltd.Greatcell Solar is a registered trademark of Greatcell Solar Materials Pty Ltd.
Greatcell Solar is a registered trademark of Greatcell Solar

pictograms

Exclamation mark

signalword

Warning

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

target_organs

Respiratory system

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Slide 1 of 4

1 of 4

Methylammonium iodide ≥99%, anhydrous

Sigma-Aldrich

901434

Methylammonium iodide

Formamidinium iodide

Sigma-Aldrich

806048

Formamidinium iodide

Guanidinium iodide ≥99%

Sigma-Aldrich

806056

Guanidinium iodide

Methylammonium iodide

Sigma-Aldrich

806390

Methylammonium iodide

Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures
Lin Y, et al.
The Journal of Physical Chemistry Letters, 9(3), 654-658 (2018)
Structural changes and band gap tunability with incorporation of n-butylammonium iodide in perovskite thin film
Rebecca LWX, et al.
Heliyon, 6(2), e03364-e03364 (2020)
Unveiling the guest effect of N-butylammonium iodide towards efficient and stable 2D-3D perovskite solar cells through sequential deposition process
Wang Y, et al.
Chemical Engineering Journal, 6(2), 123589-123589 (2019)
Tunable light-emitting diodes utilizing quantum-confined layered perovskite emitters
Congreve DN, et al.
ACS photonics, 4(3), 476-481 (2017)
Olivia F Williams et al.
The journal of physical chemistry. A, 123(51), 11012-11021 (2019-11-16)
Two-dimensional (2D) hybrid perovskites are generating broad scientific interest because of their potential for use in photovoltaics and microcavity lasers. It has recently been demonstrated that mixtures of quantum wells with different thicknesses can be assembled in films with heterogeneous

Articles

A brief tutorial on alternative energy materials for advanced batteries and fuel cells, as well as high-purity inorganics, conducting polymers, and electrolytes.

Next generation solar cells have the potential to achieve conversion efficiencies beyond the Shockley-Queisser (S-Q) limit while also significantly lowering production costs.

Dr. Perini and Professor Correa-Baena discuss the latest research and effort to obtain higher performance and stability of perovskite materials.

For several decades, the need for an environmentally sustainable and commercially viable source of energy has driven extensive research aimed at achieving high efficiency power generation systems that can be manufactured at low cost.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service