900365
Gold, nanorods
10 nm diameter, λmax, 1064 nm, dispersion in H2O, citrate capped
Synonym(s):
Au Nanorods
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
Quality Level
form
dispersion in H2O
nanorod
concentration
35 μg/mL in H2O
L
65-69 nm
diameter
10 nm
pH
6
λmax
1064 nm
storage temp.
2-8°C
Looking for similar products? Visit Product Comparison Guide
General description
- Longitudinal peak = 1064 nm (± 15 nm)
- Longitudinal absorbance OD = 1
- Transverse peak = 508 nm (± 5 nm)
- Transverse absorbance OD = 0.1
- Citrate capped
Application
Owing to the excellent optical properties arising from the surface plasmon resonance, gold nanorods find applications in biomedical imaging, drug delivery and photothermal treatment. The citrate capped nanorods are non-cytotoxic compared to the CTAB capped nanorods and are well suited for biomedical applications.
Legal Information
This product was produced under the methods claimed in U.S. Pat. Nos. 8,956,440 and 8,241,922
Storage Class
12 - Non Combustible Liquids
wgk_germany
nwg
flash_point_f
Not applicable
flash_point_c
Not applicable
Choose from one of the most recent versions:
Certificates of Analysis (COA)
Don't see the Right Version?
If you require a particular version, you can look up a specific certificate by the Lot or Batch number.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Journal of biomedical nanotechnology, 12(3), 481-490 (2016-06-10)
Gold nanoparticles are chemically fabricated and tuned to strongly absorb near infrared (NIR) light, enabling deep optical penetration and therapy within human tissues, where sufficient heating induces tumour necrosis. In our studies we aim to establish the optimal gold nanorod
Nanotechnology, 26(43), 432001-432001 (2015-10-09)
Photothermal therapy, also referred to as optical hyperthermia or photothermal ablation, is an emerging strategy for treating solid tumours. Colloidal gold converts the absorbed light into localized heat via a non-radiative mechanism, surface plasmon resonance, which ablates the solid tumours.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service