MilliporeSigma
All Photos(3)

Documents

913251

Sigma-Aldrich

Y7

≥99%

Sign Into View Organizational & Contract Pricing

Synonym(s):
BTP-4Cl
Empirical Formula (Hill Notation):
C82H86Cl4N8O2S5
Molecular Weight:
1517.75

Quality Level

assay

≥99%

form

solid

color

dark

orbital energy

HOMO -5.68 eV 
LUMO -3.63 eV 

Related Categories

General description

Synonym: 2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2",3":4′,5′]-thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile

Application

BTP-4Cl is a high performance, low bandgap, non-fullerene accpetor (NFA). It is the chlorinated derivative of the fused benzothiadiazole-based NFA, Y6. It offer high power conversion efficiency (PCE) when pairing with p-type polymer PM6. A 9 mm2 single junction device of this blend provided a PCE of 16.5% at thickness of ~ 100nm, and provided a PCE of >13% at a thickness of ~300 nm (for the active layer). An impressive PCE of >15% was reached for this blend with a 1 cm2 active layer. In general, Y7 showed improved performances over Y6, mainly due to its highest photoluminescence, lower non-radiative energy loss, and a higher Voc of 0.867 V vs 0.834 V for Y6.
Y7 is a highly conjugated organic semiconductor, electron deficient due to its structure and hence suitable for use as a n-type non-fullerene electron acceptor(NFA) in OPV devices. It has an absorption range that extends to the near infrared (NIR) and has demonstrated a power conversion efficiency (PCE) up to15.7% with PBDB-T-2F (PM6) as the polymer donor.

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Yong Cui et al.
Nature communications, 10(1), 2515-2515 (2019-06-09)
Broadening the optical absorption of organic photovoltaic (OPV) materials by enhancing the intramolecular push-pull effect is a general and effective method to improve the power conversion efficiencies of OPV cells. However, in terms of the electron acceptors, the most common

Related Content

Organic electronics utilizes organic conductors and semiconductors for applications in organic photovoltaics, organic light-emitting diodes, and organic field-effect transistors.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service