MilliporeSigma
All Photos(1)

Documents

920118

Sigma-Aldrich

R2R Monolayer small grain CVD graphene on silicon wafer

4 in diameter, avg. no. of layers, 1

Sign Into View Organizational & Contract Pricing

Synonym(s):
Roll-to-Roll graphene

Quality Level

description

Growth method: roll-to-roll CVD
Wafer: SiO2 (300nm) Si
Number of layer: Monolayer
Raman intensity 2D/G: ≥1.5

feature

avg. no. of layers 1

sheet resistance

240 Ω/sq ±10%

size

5 μm × 5 μm ± 10%, grain size

surface coverage

surface coverage >98%

transmittance

>97%

semiconductor properties

(mobility>1500 cm2/V·s) (Hall effect measurements)

Related Categories

General description

Be cautious not to drop
Keep away from contamination, heat, dust and flame etc.
Roll-to-roll, high-quality, monolayer CVD graphene with small grain size (∼5μm2) on silicon wafer, 4 inch diameter.

Application

Our Roll-to-Roll CVD graphene products are true monolayer high quality graphene, fabricated inside a Cleanroom, heavily monitored and QC to assure high reproducibility.
The roll-to-roll process allows continuous, large scale graphene production.

This small grain size product is made by transferring roll-to-roll CVD graphene onto silicon wafer. It is ready-to-use with low sheet resistance, and would enable unmatched reproducibility and allow high performance for CVD graphene based cell culture scaffold, biosensors and chemically gated sensors.

Storage and Stability

Avoid direct sun light, avoid high temperature, avoid high humidity, and avoid dust.

Legal Information

Product of LG Electronics, R&D use only

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Omid Akhavan
Journal of materials chemistry. B, 4(19), 3169-3190 (2016-05-21)
Although graphene/stem cell-based tissue engineering has recently emerged and has promisingly and progressively been utilized for developing one of the most effective regenerative nanomedicines, it suffers from low differentiation efficiency, low hybridization after transplantation and lack of appropriate scaffolds required
Jinglei Ping et al.
ACS nano, 10(9), 8700-8704 (2016-08-18)
Scalable production of all-electronic DNA biosensors with high sensitivity and selectivity is a critical enabling step for research and applications associated with detection of DNA hybridization. We have developed a scalable and very reproducible (>90% yield) fabrication process for label-free
Bing Deng et al.
Advanced materials (Deerfield Beach, Fla.), 31(9), e1800996-e1800996 (2018-10-03)
Chemical vapor deposition (CVD) is considered to be an efficient method for fabricating large-area and high-quality graphene films due to its excellent controllability and scalability. Great efforts have been made to control the growth of graphene to achieve large domain

Articles

Dr. Xiang’s and Maruyama’s review presents the most recent research activities on 1D vdWHs, including the candidate materials, the synthetic techniques, and characterization methods. The optoelectronic applications are discussed in detail for different constructions of the 1D vdWHs-based devices (FETs, sensors, LEDs, photovoltaic devices, and light detection). Some challenges and perspectives for future development and applications of 1D vdWHs are also proposed to conclude the review.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service