Skip to Content
MilliporeSigma
  • Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling.

Super-stretchable graphene oxide macroscopic fibers with outstanding knotability fabricated by dry film scrolling.

ACS nano (2014-05-07)
Rodolfo Cruz-Silva, Aaron Morelos-Gomez, Hyung-Ick Kim, Hong-Kyu Jang, Ferdinando Tristan, Sofia Vega-Diaz, Lakshmy P Rajukumar, Ana Laura Elías, Nestor Perea-Lopez, Jonghwan Suhr, Morinobu Endo, Mauricio Terrones
ABSTRACT

Graphene oxide (GO) has recently become an attractive building block for fabricating graphene-based functional materials. GO films and fibers have been prepared mainly by vacuum filtration and wet spinning. These materials exhibit relatively high Young's moduli but low toughness and a high tendency to tear or break. Here, we report an alternative method, using bar coating and drying of water/GO dispersions, for preparing large-area GO thin films (e.g., 800-1200 cm(2) or larger) with an outstanding mechanical behavior and excellent tear resistance. These dried films were subsequently scrolled to prepare GO fibers with extremely large elongation to fracture (up to 76%), high toughness (up to 17 J/m(3)), and attractive macroscopic properties, such as uniform circular cross section, smooth surface, and great knotability. This method is simple, and after thermal reduction of the GO material, it can render highly electrically conducting graphene-based fibers with values up to 416 S/cm at room temperature. In this context, GO fibers annealed at 2000 °C were also successfully used as electron field emitters operating at low turn on voltages of ca. 0.48 V/μm and high current densities (5.3 A/cm(2)). Robust GO fibers and large-area films with fascinating architectures and outstanding mechanical and electrical properties were prepared with bar coating followed by dry film scrolling.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen peroxide solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Supelco
Sulfuric acid, for the determination of nitrogen, ≥97.0%
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Supelco
Hydrogen peroxide solution, ≥30%, for trace analysis
Sigma-Aldrich
Hydrogen peroxide solution, tested according to Ph. Eur.
Sigma-Aldrich
Sulfuric acid, 99.999%
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 4.2 mm × 8 in. , WGS-5BL Coaxial NMR tube
Sigma-Aldrich
Hydrazine hydrate, reagent grade, N2H4 50-60 %
Sigma-Aldrich
Phosphoric acid solution, 85 wt. % in H2O, FCC, FG
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Sulfuric acid solution, 0.05 M
Sigma-Aldrich
Sulfuric acid, SAJ first grade, ≥95.0%
Sigma-Aldrich
Sulfuric acid solution, 5 mM
Sigma-Aldrich
Sulfuric acid solution, 0.025 M
Sigma-Aldrich
Sulfuric acid solution, 0.1 M
Sigma-Aldrich
Hydrogen peroxide solution, SAJ first grade, ≥30.0%
Sigma-Aldrich
Sulfuric acid solution, 0.25 M
Sigma-Aldrich
Sulfuric acid solution, 0.5 M
Sigma-Aldrich
Sulfuric acid solution, 1.5 M
Sigma-Aldrich
Sulfuric acid solution, 0.01 M
Sigma-Aldrich
Sulfuric acid, JIS special grade, ≥95.0%
Supelco
Hydrogen peroxide solution, 30 % (w/w), for ultratrace analysis
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Sulfuric acid, puriss., meets analytical specification of Ph. Eur., BP, 95-97%
Sigma-Aldrich
Sulfuric acid, ACS reagent, 95.0-98.0%
Sigma-Aldrich
Sulfuric acid, puriss. p.a., for determination of Hg, ACS reagent, reag. ISO, reag. Ph. Eur., 95.0-97.0%
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Potassium permanganate, ≤150 μm particle size, 97%