Skip to Content
MilliporeSigma
  • Fundamental analysis of recombinant human epidermal growth factor in solution with biophysical methods.

Fundamental analysis of recombinant human epidermal growth factor in solution with biophysical methods.

Drug development and industrial pharmacy (2014-02-08)
Nam Ah Kim, Dae Gon Lim, Jun Yeul Lim, Ki Hyun Kim, Seong Hoon Jeong
ABSTRACT

Correlation of thermodynamic and secondary structural stability of proteins at various buffer pHs was investigated using differential scanning calorimetry (DSC), dynamic light scattering (DLS) and attenuated total reflection Fourier-transform infrared spectroscopy (ATR FT-IR). Recombinant human epithelial growth factor (rhEGF) was selected as a model protein at various pHs and in different buffers, including phosphate, histidine, citrate, HEPES and Tris. Particle size and zeta potential of rhEGF at each selected pH of buffer were observed by DLS. Four factors were used to characterize the biophysical stability of rhEGF in solution: temperature at maximum heat flux (Tm), intermolecular β-sheet contents, zeta size and zeta potential. It was possible to predict the apparent isoelectric point (pI) of rhEGF as 4.43 by plotting pH against zeta potential. When the pH of the rhEGF solution increased or decreased from pI, the absolute zeta potential increased indicating a reduced possibility of protein aggregation, since Tm increased and β-sheet contents decreased. The contents of induced intermolecular β-sheet in Tris and HEPES buffers were the lowest. Thermodynamic stability of rhEGF markedly increased when pH is higher than 6.2 in histidine buffer where Tm of first transition was all above 70 °C. Moreover, rhEGF in Tris buffer was more thermodynamically stable than in HEPES with higher zeta potential. Tris buffer at pH 7.2 was concluded to be the most favorable.

MATERIALS
Product Number
Brand
Product Description

Supelco
L-Histidine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Hydrochloric acid solution, 1 M
Sigma-Aldrich
Hydrochloric acid solution, 6 M
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Hydrochloric acid solution, 0.2 M
Sigma-Aldrich
Hydrochloric acid solution, 0.05 M
Sigma-Aldrich
Hydrochloric acid, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 5 mm × 8 in.
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
L-Histidine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
L-Histidine monohydrochloride monohydrate, ≥99.0% (AT)
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
SAFC
L-Histidine monohydrochloride monohydrate
Sigma-Aldrich
Citrate Concentrated Solution, BioUltra, for molecular biology, 1 M in H2O
Sigma-Aldrich
Phosphoric acid solution, 85 wt. % in H2O, FCC, FG
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 4.2 mm × 8 in. , WGS-5BL Coaxial NMR tube
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
L-Histidine monohydrochloride monohydrate, ≥98% (HPLC)
Sigma-Aldrich
L-Histidine, ReagentPlus®, ≥99% (TLC)
Sigma-Aldrich
Citrate Concentrated Solution, BioReagent, suitable for coagulation assays, 4 % (w/v)
Sigma-Aldrich
Hydrochloric acid solution, 0.5 M
Sigma-Aldrich
Hydrochloric acid, JIS special grade, 35.0-37.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.01 M
Sigma-Aldrich
Hydrogen chloride – ethanol solution, 0.1 M in ethanol
Sigma-Aldrich
Hydrochloric acid solution, 2 M
Supelco
L-Histidine, Pharmaceutical Secondary Standard; Certified Reference Material