Skip to Content
MilliporeSigma
  • Nebulization of active pharmaceutical ingredients with the eFlow(®) rapid: impact of formulation variables on aerodynamic characteristics.

Nebulization of active pharmaceutical ingredients with the eFlow(®) rapid: impact of formulation variables on aerodynamic characteristics.

Journal of pharmaceutical sciences (2014-07-06)
Moritz Beck-Broichsitter, Nadine Prüfer, Nina Oesterheld, Werner Seeger, Thomas Schmehl
ABSTRACT

Nebulization of active pharmaceutical ingredient (API) solutions is a well-established means to achieve pulmonary drug deposition. The current study identified the impact of formulation variables on the aerosolization performance of the eFlow(®) rapid with special respect to optimized lung application. API formulations (including excipient-supplemented samples) were investigated for physicochemical properties, then nebulized using vibrating-mesh technology. The generated aerosol clouds were analyzed by laser diffraction. Aerosol deposition characteristics in the human respiratory tract were estimated using an algebraic model. Remarkable effects on aerosolization performance [i.e., mass median aerodynamic diameter (MMAD)] of API solutions were obtained when the sample conductivity (by API concentration and type, sodium chloride addition) and dynamic viscosity (by application of sucrose and poly(ethylene glycol) 200) were elevated. A similar influence was observed for a decline in surface tension (by ethanol addition). Thus, a defined adjustment of formulation parameters allowed for a decrease of the MMAD from ∼ 8.0 μm to values as small as ∼ 3.5 μm. Consequently, the pattern and efficiency of aerosol deposition in the human respiratory tract were improved. In conclusion, identification of physicochemical variables and their way of influencing vibrating-mesh nebulization has been provided to deliver a platform for tailoring aerosol characteristics and thus, advancing pulmonary therapy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Salbutamol, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ethanol, puriss. p.a., absolute, ≥99.8% (GC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Supelco
Sucrose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sucrose, SAJ first grade
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Salbutamol hemisulfate salt, ≥98%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sucrose, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ethylene glycol 5 M solution
Sigma-Aldrich
Ethanol, ACS reagent, prima fine spirit, without additive, F15 o1
Sigma-Aldrich
Salbutamol
Supelco
Salbutamol, VETRANAL®, analytical standard
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, ACS reagent
Millipore
Sucrose, ACS reagent, suitable for microbiology, ≥99.0%
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture