Skip to Content
MilliporeSigma
  • Characteristics and viral propagation properties of a new human diploid cell line, Walvax-2, and its suitability as a candidate cell substrate for vaccine production.

Characteristics and viral propagation properties of a new human diploid cell line, Walvax-2, and its suitability as a candidate cell substrate for vaccine production.

Human vaccines & immunotherapeutics (2015-03-25)
Bo Ma, Li-Fang He, Yi-Li Zhang, Min Chen, Li-Li Wang, Hong-Wei Yang, Ting Yan, Meng-Xiang Sun, Cong-Yi Zheng
ABSTRACT

Human diploid cell strains (HDCSs), possessing identical chromosome sets known to be free of all known adventitious agents, are of great use in developing human vaccines. However it is extremely difficult to obtain qualified HDCSs that can satisfy the requirements for the mass production of vaccines. We have developed a new HDCS, Walvax-2, which we derived from the lung tissue of a 3-month-old fetus. We established primary, master and working cell banks successfully from reconstituted frozen cells. Observations during the concurrent propagation of Walvax-2 and MRC-5 cells revealed differences in terms of growth rate, cell viability and viral sensitivities. Specifically, Walvax-2 cells replicated more rapidly than MRC-5 cells, with Walvax-2 cells attaining the same degree of confluence in 48 hours as was reached by MRC-5 cells in 72 hours. Moreover, Walvax-2 cells attained 58 passages of cell doublings whereas MRC-5 reached 48 passages during this period. We also assessed the susceptibility of these cells to rabies, hepatitis A, and Varicella viruses. Analysis of virus titers showed the Walvax-2 cells to be equal or superior to MRC-5 cells for cultivating these viruses. Furthermore, in order to characterize the Walvax-2 cell banks, a series of tests including cell identification, chromosomal characterization, tumorigenicity, as well as tests for the presence of microbial agents, exogenous viruses, and retroviruses, were conducted according to standard international protocols. In conclusion, results from this study show that Walvax-2 cell banks are a promising cell substrate and could potentially be used for the manufacturing of HDCVs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetone, for residue analysis, JIS 5000
Sigma-Aldrich
Acetone, suitable for HPLC
Sigma-Aldrich
Acetone, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetone, ≥99.5%, for residue analysis
Sigma-Aldrich
Acetone, for residue analysis, ≥99.5%
Sigma-Aldrich
Acetone, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, for chromatography, ≥99.8%
Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%
Sigma-Aldrich
Dimethyl sulfoxide, SAJ first grade, ≥99.0%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide, JIS special grade, ≥99.0%
Sigma-Aldrich
Dimethyl sulfoxide, suitable for HPLC
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
SAFC
Minimum Essential Medium Eagle, AutoMod, with Earle′s salts, without L-glutamine and sodium bicarbonate, powder, suitable for cell culture
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.0%, suitable for absorption spectrum analysis