Skip to Content
MilliporeSigma
  • Mesoporous calcium phosphate bionanomaterials with controlled morphology by an energy-efficient microwave method.

Mesoporous calcium phosphate bionanomaterials with controlled morphology by an energy-efficient microwave method.

Journal of biomedical materials research. Part A (2015-05-28)
Philip James Thomas Reardon, Jie Huang, Junwang Tang
ABSTRACT

Calcium phosphate nanomaterials with controllable morphology and mesostructure were synthesized via a rapid and energy efficient microwave method. An increase in aspect ratio from nanoplates to nanorods was achieved by increasing the solvent chain length, accompanied by a subsequent about 23% increase in surface area and porosity. Control of mesoporosity was also achieved by varying the synthesis time and quantity of H2 O in the reaction solvent. Comparative studies were carried out using conventional heating (CON) and room temperature co-precipitation (RT) methods. It was found that microwave synthesis produces nanomaterials with about 50% higher yields, 7.5/1.7 times higher surface area and 3/5 times higher pore volume than RT/CON materials respectively, as well as having a lower distribution of particle size/shape (lower standard deviation values of their dimensions). Furthermore, in vitro protein loading tests of microwave synthesized mesoporous calcium phosphate materials showed an enhanced loading efficiency of bovine serum albumin (3-7 times), as compared with non-mesostructured products from room temperature precipitation, in accordance with their larger surface area and porosity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Butanol, SAJ first grade, ≥99.0%
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
1-Butanol, JIS special grade, ≥99.0%
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Supelco
1-Butanol, suitable for HPLC, 99.8%
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
1-Butanol, for molecular biology, ≥99%
Sigma-Aldrich
1-Butanol, anhydrous, 99.8%
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
1-Butanol, suitable for HPLC
Sigma-Aldrich
1-Butanol, ACS reagent, ≥99.4%
Sigma-Aldrich
1-Butanol, 99.9%
Sigma-Aldrich
1-Butanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
1-Butanol, BioRenewable, ACS reagent, ≥99.4%
Sigma-Aldrich
Ethyl alcohol, Pure 190 proof, for molecular biology
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Ethanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Butyl alcohol, natural, ≥99.5%, FCC, FG
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Supelco
Ethanol standards 10% (v/v), 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)