Skip to Content
MilliporeSigma
  • Automated direct-immersion solid-phase microextraction using crosslinked polymeric ionic liquid sorbent coatings for the determination of water pollutants by gas chromatography.

Automated direct-immersion solid-phase microextraction using crosslinked polymeric ionic liquid sorbent coatings for the determination of water pollutants by gas chromatography.

Analytical and bioanalytical chemistry (2015-05-01)
María Cordero-Vaca, María J Trujillo-Rodríguez, Cheng Zhang, Verónica Pino, Jared L Anderson, Ana M Afonso
ABSTRACT

Four different crosslinked polymeric ionic liquid (PIL)-based sorbent coatings were evaluated in an automated direct-immersion solid-phase microextraction method (automated DI-SPME) in combination with gas chromatography (GC). The crosslinked PIL coatings were based on vinyl-alkylimidazolium- (ViCnIm-) or vinylbenzyl-alkylimidazolium- (ViBzCnIm-) IL monomers, and di-(vinylimidazolium)dodecane ((ViIm)2C12-) or di-(vinylbenzylimidazolium)dodecane ((ViBzIm)2C12-) dicationic IL crosslinkers. In addition, a PIL-based hybrid coating containing multi-walled carbon nanotubes (MWCNTs) was also studied. The studied PIL coatings were covalently attached to derivatized nitinol wires and mounted onto the Supelco assembly to ensure automation when acting as SPME coatings. Their behavior was evaluated in the determination of a group of water pollutants, after proper optimization. A comparison was carried out with three common commercial SPME fibers. It was observed that those PILs containing a benzyl group in their structures, either in the IL monomer and crosslinker (PIL-1-1) or only in the crosslinker (PIL-0-1), were the most efficient sorbents for the selected analytes. The validation of the overall automated DI-SPME-GC-flame ionization detector (FID) method gave limits of detection down to 135 μg · L(-1) for p-cresol when using the PIL-1-1 and down to 270 μg · L(-1) when using the PIL-0-1; despite their coating thickness: ~2 and ~5 μm, respectively. Average relative recoveries with waters were of 85 ± 14 % and 87 ± 15 % for PIL-1-1 and PIL-0-1, respectively. Precision values as relative standard deviation were always lower than 4.9 and 7.6 % (spiked level between 10 and 750 μg · L(-1), as intra-day precision). Graphical Abstract Automated DI-SPME-GC-FID using crosslinked-PILs sorbent coatings for the determination of waterpollutants.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
1-Bromohexane, 98%
Sigma-Aldrich
Imidazole, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Imidazole, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Imidazole, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Cyclohexane, anhydrous, 99.5%
Sigma-Aldrich
4-Octylphenol, 99%
Sigma-Aldrich
o-Cresol, ≥99%
Sigma-Aldrich
4-tert-Butylphenol, 99%
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Supelco
SPME Portable Field Sampler, coating PDMS
Supelco
SPME fiber assembly Polydimethylsiloxane (PDMS), df 100 μm(PDMS, needle size 24 ga, for use with manual holder
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Hydrogen peroxide solution, contains potassium stannate as inhibitor, 30-32 wt. % in water, semiconductor grade, 99.999% trace metals basis
Sigma-Aldrich
Imidazole, ReagentPlus®, 99%
Sigma-Aldrich
Poly(dimethylsiloxane), viscosity 1.0 cSt (25 °C)
Sigma-Aldrich
Hexamethyldisiloxane, viscosity 0.65 cSt (25 °C)
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Imidazole, for molecular biology, ≥99% (titration)
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
Imidazole, ≥99% (titration), crystalline
Sigma-Aldrich
Imidazole, ACS reagent, ≥99% (titration)
Sigma-Aldrich
Cyclohexane, suitable for HPLC
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
2,2′-Azobis(2-methylpropionitrile), 98%
Sigma-Aldrich
Sodium hydroxide, SAJ first grade, ≥95.0%
Sigma-Aldrich
Sodium hydroxide solution, 0.2 M
Supelco
SPME fiber assembly Polydimethylsiloxane (PDMS), df 7 μm(PDMS, needle size 24 ga, for use with manual holder