Skip to Content
MilliporeSigma
  • A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis.

A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis.

The Journal of biological chemistry (2009-12-26)
Shaoqing He, Christopher McPhaul, John Zhong Li, Rita Garuti, Lisa Kinch, Nick V Grishin, Jonathan C Cohen, Helen H Hobbs
ABSTRACT

Obesity and insulin resistance are associated with deposition of triglycerides in tissues other than adipose tissue. Previously, we showed that a missense mutation (I148M) in PNPLA3 (patatin-like phospholipase domain-containing 3 protein) is associated with increased hepatic triglyceride content in humans. Here we examined the effect of the I148M substitution on the enzymatic activity and cellular location of PNPLA3. Structural modeling predicted that the substitution of methionine for isoleucine at residue 148 would restrict access of substrate to the catalytic serine at residue 47. In vitro assays using recombinant PNPLA3 partially purified from Sf9 cells confirmed that the wild type enzyme hydrolyzes emulsified triglyceride and that the I148M substitution abolishes this activity. Expression of PNPLA3-I148M, but not wild type PNPLA3, in cultured hepatocytes or in the livers of mice increased cellular triglyceride content. Cell fractionation studies revealed that approximately 90% of wild type PNPLA3 partitioned between membranes and lipid droplets; substitution of isoleucine for methionine at position 148 did not alter the subcellular distribution of the protein. These data are consistent with PNPLA3-I148M promoting triglyceride accumulation by limiting triglyceride hydrolysis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Lipase from Candida sp., recombinant, expressed in Aspergillus niger
Sigma-Aldrich
Lipase from Aspergillus oryzae, lyophilized, powder, white, ~50 U/mg
Sigma-Aldrich
Lipase from Candida rugosa, lyophilized, powder (fine), 15-25 U/mg
Sigma-Aldrich
Lipase from Rhizopus niveus, powder (fine), ≥1.5 U/mg
Sigma-Aldrich
Lipase from Candida rugosa, powder, yellow-brown, ≥2 U/mg
Sigma-Aldrich
Lipase from Rhizopus oryzae, powder (fine), ~10 U/mg
Sigma-Aldrich
Lipase from Aspergillus oryzae, ≥20,000 U/g
Sigma-Aldrich
Lipase from Mucor miehei, powder, slightly brown, ~1 U/mg
Sigma-Aldrich
Lipase acrylic resin, ≥5,000 U/g, recombinant, expressed in Aspergillus niger
Sigma-Aldrich
Lipase from Candida rugosa, Type VII, ≥700 unit/mg solid
Sigma-Aldrich
Lipase from Pseudomonas sp., Type XIII, lyophilized powder, ≥15 units/mg solid
Sigma-Aldrich
Lipase from porcine pancreas, Type II, ≥125 units/mg protein (using olive oil (30 min incubation)), 30-90 units/mg protein (using triacetin)
Sigma-Aldrich
Lipase from porcine pancreas, Type VI-S, ≥20,000 units/mg protein, lyophilized powder
Sigma-Aldrich
Lipase from wheat germ, Type I, lyophilized powder, 5-15 units/mg solid
Sigma-Aldrich
Lipase from Mucor miehei, lyophilized powder, ≥4,000 units/mg solid (using olive oil)
Sigma-Aldrich
Lipase from Candida rugosa, lyophilized powder, ≥40,000 units/mg protein
Sigma-Aldrich
Monoclonal ANTI-FLAG® M2 antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Sigma-Aldrich
Lipase from Pseudomonas cepacia, powder, light beige, ≥30 U/mg
Sigma-Aldrich
Lipase A Candida antarctica, recombinant from Aspergillus oryzae, powder, beige, ~2 U/mg
Sigma-Aldrich
Lipase immobilized from Candida antarctica, beads, slightly brown, >2 U/mg
Sigma-Aldrich
Lipase from Aspergillus niger, powder (fine), ~200 U/g
Sigma-Aldrich
Lipase from Mucor javanicus, lyophilized powder, ≥300 units/mg solid (using olive oil)
Sigma-Aldrich
Lipase B Candida antarctica, recombinant from Aspergillus oryzae, powder, beige, ~9 U/mg