HomeReaction Design & OptimizationChiral Phosphoric Acids: Versatile Organocatalysts with Expanding Applications
Chiral Phosphoric Acids: Versatile Organocatalysts with Expanding Applications
![BINOL-derived chiral phosphoric acids BINOL-derived chiral phosphoric acids](/deepweb/assets/sigmaaldrich/marketing/global/images/technical-documents/articles/chemistry-and-synthesis/reaction-design-and-optimization/binol-derived/binol-derived.jpg)
Figure 1.BINOL-derived Chiral Phosphoric Acids
Advantages
- Alternative to metal catalysts and chiral auxiliaries
- Both enantiomers of catalyst are available
- Relatively low catalyst loading (often 1-5 mol %)
- High selectivity at non-cryogenic reaction temperatures (-30 to 23 °C)
Representative Applications
Reductive Amination
One of the earliest demonstrations of chiral phosphoric acid catalysis is the metal-free reduction of imines with an organic reductant (Hantzsch ester) to give enantioenriched amines.1
![Reductive Amination Reductive Amination](/deepweb/assets/sigmaaldrich/marketing/global/images/technical-documents/articles/chemistry-and-synthesis/reaction-design-and-optimization/reductive-amination-application/reductive-amination-application.jpg)
Figure 2.Reductive Amination
Allylation
The enantioselective allylation of aldehydes can be accomplished under very mild conditions at non-cryogenic temperature (-30 °C).2
![Allylation Allylation](/deepweb/assets/sigmaaldrich/marketing/global/images/technical-documents/articles/chemistry-and-synthesis/reaction-design-and-optimization/allylation-application/allylation-application.jpg)
Figure 3.Allylation
Friedel-Crafts Alkylation
Functionalized indoles3,4 and pyrroles5 can be accessed in enantioenriched form by asymmetric alkylation.
![Friedel-Crafts Alkylation Friedel-Crafts Alkylation](/deepweb/assets/sigmaaldrich/marketing/global/images/technical-documents/articles/chemistry-and-synthesis/reaction-design-and-optimization/friedel-crafts-application/friedel-crafts-application.jpg)
Figure 4.Friedel-Crafts Alkylation
Materials
Loading
References
1.
Rueping M, Sugiono E, Azap C, Theissmann T, Bolte M. 2005. Enantioselective Brønsted Acid Catalyzed Transfer Hydrogenation:? Organocatalytic Reduction of Imines. Org. Lett.. 7(17):3781-3783. https://doi.org/10.1021/ol0515964
2.
Hoffmann S, Seayad AM, List B. 2005. A Powerful Brønsted Acid Catalyst for the Organocatalytic Asymmetric Transfer Hydrogenation of Imines. Angew. Chem. Int. Ed.. 44(45):7424-7427. https://doi.org/10.1002/anie.200503062
3.
Storer RI, Carrera DE, Ni Y, MacMillan DWC. 2006. Enantioselective Organocatalytic Reductive Amination. J. Am. Chem. Soc.. 128(1):84-86. https://doi.org/10.1021/ja057222n
4.
Jain P, Antilla JC. 2010. Chiral Brønsted Acid-Catalyzed Allylboration of Aldehydes. J. Am. Chem. Soc.. 132(34):11884-11886. https://doi.org/10.1021/ja104956s
5.
Terada M, Sorimachi K. 2007. Enantioselective Friedel?Crafts Reaction of Electron-Rich Alkenes Catalyzed by Chiral Brønsted Acid. J. Am. Chem. Soc.. 129(2):292-293. https://doi.org/10.1021/ja0678166
6.
Itoh J, Fuchibe K, Akiyama T. 2008. Chiral Phosphoric Acid Catalyzed Enantioselective Friedel–Crafts Alkylation of Indoles with Nitroalkenes: Cooperative Effect of 3 Å Molecular Sieves. Angew. Chem. Int. Ed.. 47(21):4016-4018. https://doi.org/10.1002/anie.200800770
7.
He Y, Lin M, Li Z, Liang X, Li G, Antilla JC. 2011. Direct Synthesis of Chiral 1,2,3,4-Tetrahydropyrrolo[1,2-a]pyrazines via a Catalytic Asymmetric Intramolecular Aza-Friedel?Crafts Reaction. Org. Lett.. 13(17):4490-4493. https://doi.org/10.1021/ol2018328
Sign In To Continue
To continue reading please sign in or create an account.
Don't Have An Account?