コンテンツへスキップ
Merck
  • Prenatal testosterone excess decreases neurokinin 3 receptor immunoreactivity within the arcuate nucleus KNDy cell population.

Prenatal testosterone excess decreases neurokinin 3 receptor immunoreactivity within the arcuate nucleus KNDy cell population.

Journal of neuroendocrinology (2014-12-17)
T Ahn, C Fergani, L M Coolen, V Padmanabhan, M N Lehman
要旨

Prenatal exposure of the female ovine foetus to excess testosterone leads to neuroendocrine disruptions in adulthood, as demonstrated by defects in responsiveness with respect to the ability of gonadal steroids to regulate gonadotrophin-releasing hormone (GnRH) secretion. In the ewe, neurones of the arcuate nucleus (ARC), which co-expresses kisspeptin, neurokinin B (NKB) and dynorphin (termed KNDy cells), play a key role in steroid feedback control of GnRH and show altered peptide expression after prenatal testosterone treatment. KNDy cells also co-localise NKB receptors (NK3R), and it has been proposed that NKB may act as an autoregulatory transmitter in KNDy cells where it participates in the mechanisms underlying steroid negative-feedback. In addition, recent evidence suggests that NKB/NK3R signalling may be involved in the positive-feedback actions of oestradiol leading to the GnRH/luteinising hormone (LH) surge in the ewe. Thus, we hypothesise that decreased expression of NK3R in KNDy cells may be present in the brains of prenatal testosterone-treated animals, potentially contributing to reproductive defects. Using single- and dual-label immunohistochemistry we found NK3R-positive cells in diverse areas of the hypothalamus; however, after prenatal testosterone treatment, decreased numbers of NK3R immunoreactive (-IR) cells were seen only in the ARC. Moreover, dual-label confocal analyses revealed a significant decrease in the percentage of KNDy cells (using kisspeptin as a marker) that co-localised NK3R. To investigate how NKB ultimately affects GnRH secretion in the ewe, we examined GnRH neurones in the preoptic area (POA) and mediobasal hypothalamus (MBH) for the presence of NK3R. Although, consistent with earlier findings, we found no instances of NK3R co-localisation in GnRH neurones in either the POA or MBH; in addition, > 70% GnRH neurones in both areas were contacted by NK3R-IR presynaptic terminals suggesting that, in addition to its role at KNDy cell bodies, NKB may regulate GnRH neurones by presynaptic actions. In summary, the finding of decreased NK3R within KNDy cells in prenatal testosterone-treated sheep complements previous observations of decreased NKB and dynorphin in the same population, and may contribute to deficits in the feedback control of GnRH/LH secretion in this animal model.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
プロゲステロン, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
過酸化水素 溶液, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
トリコスタチンA, ≥98% (HPLC), from Streptomyces sp.
Sigma-Aldrich
綿実油
Sigma-Aldrich
プロピオン酸テストステロン, solid
Sigma-Aldrich
過酸化水素 溶液, JIS special grade, 30.0-35.5%
Sigma-Aldrich
プロゲステロン, meets USP testing specifications
Millipore
過酸化水素 溶液, 3%, suitable for microbiology
Sigma-Aldrich
過酸化水素 溶液, SAJ first grade, ≥30.0%
Sigma-Aldrich
モノクロナール抗シナプトフィジン マウス宿主抗体, clone SVP-38, ascites fluid
Sigma-Aldrich
プロゲステロン, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
黄体形成ホルモン放出ホルモン, ≥97% (HPLC)
USP
プロゲステロン, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
黄体形成ホルモン放出ホルモン サケ, ≥97% (HPLC)
Supelco
プロゲステロン, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
プロピオン酸テストステロン, tested according to Ph. Eur.
システム適合性用プロゲステロン, European Pharmacopoeia (EP) Reference Standard
プロゲステロン, European Pharmacopoeia (EP) Reference Standard
プロゲステロン, European Pharmacopoeia (EP) Reference Standard
プロピオン酸テストステロン, European Pharmacopoeia (EP) Reference Standard
Supelco
プロゲステロン, VETRANAL®, analytical standard
システム適合性用プロピオン酸テストステロン, European Pharmacopoeia (EP) Reference Standard