コンテンツへスキップ
Merck
  • Induction of ROS generation by fluconazole in Candida glabrata: activation of antioxidant enzymes and oxidative DNA damage.

Induction of ROS generation by fluconazole in Candida glabrata: activation of antioxidant enzymes and oxidative DNA damage.

Diagnostic microbiology and infectious disease (2015-05-04)
Camila Donato Mahl, Camile Saul Behling, Fernanda S Hackenhaar, Mélany Natuane de Carvalho e Silva, Jordana Putti, Tiago B Salomon, Sydney Hartz Alves, Alexandre Fuentefria, Mara S Benfato
要旨

In this study, we assessed the generation of reactive oxygen species (ROS) induced by subinhibitory concentration of fluconazole in susceptible and resistant Candida glabrata strains at stationary growth phase and measured their oxidative responses parameters: glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione-S-transferase (GST), consumption of hydrogen peroxide, and total glutathione, as well as oxidative damage in lipids, proteins, and DNA. Data showed that fluconazole increased generation of ROS and GPx and SOD enzymatic activity in treated cells; however, these enzymatic activities did not differ between resistant and susceptible strains. Susceptible strains exhibited higher GST activity than resistant, and when susceptible cells were treated with fluconazole, GST activity decreased. Fluconazole treatment cause oxidative damage only in DNA. There are a possible participation of ROS, as organic peroxides and O2(•-), in antifungal mechanism of fluconazole, which results in higher GPx and SOD enzymatic activities and oxidative DNA damage in C. glabrata.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
L-グルタチオン、還元型, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
4,4′-ジアミノジフェニルメタン, ≥97.0% (GC)
Sigma-Aldrich
2′-デオキシグアノシン 一水和物, powder, BioReagent, suitable for cell culture, 99-100%
Sigma-Aldrich
2′-デオキシグアノシン 一水和物, 99-100%
Sigma-Aldrich
8-ヒドロキシ-2′-デオキシグアノシン, ≥98% (TLC)
Sigma-Aldrich
L-グルタチオン、還元型, ≥98.0%
Sigma-Aldrich
2′-デオキシグアノシン 水和物, 99%
Sigma-Aldrich
L-グルタチオン、還元型, BioXtra, ≥98.0%