추천 제품
애플리케이션
Tetraethylammonium tetrafluoroborate can be used as a supporting electrolyte:
- In the electrocatalytic reduction of 6-bromo-1-hexene by nickel(I) salen.
- To synthesize conjugated oligomers via electrochemical polymerization.
- To fabricate high-performance supercapacitors.
신호어
Warning
유해 및 위험 성명서
Hazard Classifications
Acute Tox. 4 Dermal - Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3
표적 기관
Respiratory system
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point (°F)
Not applicable
Flash Point (°C)
Not applicable
개인 보호 장비
dust mask type N95 (US), Eyeshields, Gloves
시험 성적서(COA)
제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.
이미 열람한 고객
Materials (Basel, Switzerland), 13(4) (2020-02-28)
Willow bark is a byproduct from forestry and is obtained at an industrial scale. We upcycled this byproduct in a two-step procedure into sustainable electrode materials for symmetrical supercapacitors using organic electrolytes. The procedure employed precarbonization followed by carbonization using
Nanomaterials (Basel, Switzerland), 10(12) (2020-12-04)
Supercapacitors (SCs) are promising for powering mobile devices, electric vehicles and smart power grids due to their fast charge/discharge rate, high power capability and robust cycle stability. Nitrogen-doped porous carbons are great alternatives because they provide pseudocapacitance without losing their
ACS applied materials & interfaces, 11(19), 17226-17233 (2019-04-13)
Conducting polymers have been widely explored as coating materials for metal electrodes to improve neural signal recording and stimulation because of their mixed electronic-ionic conduction and biocompatibility. In particular, the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) is one of the best candidates
Journal of magnetic resonance (San Diego, Calif. : 1997), 323, 106895-106895 (2021-01-12)
The molecule of 2,2-dinitroethene-1,1-diamine (FOX-7) is one of the most interesting molecules with multiple redox centres stabilized by push-pull effect. To reveal the detailed mechanism of its electrochemical process radical intermediates formed in the course of its electrochemical reduction in
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.