콘텐츠로 건너뛰기
Merck
모든 사진(2)

문서

900181

Sigma-Aldrich

PEDOT:PSS

greener alternative

high-conductivity grade, 0.5-1 wt. % aqueous dispersion

동의어(들):

1% Pedot/PSS, Orgacon S315, Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate)

로그인조직 및 계약 가격 보기


About This Item

UNSPSC 코드:
12162002
NACRES:
NA.23

product name

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), high-conductivity grade

Grade

high-conductivity grade

Quality Level

설명

Visual Light Transmission (VLT): ≥ 80%

형태

dispersion

환경친화적 대안 제품 특성

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

농도

0.5-1 wt. % (PEDOT: PSS in water)

시트 저항성

<200 Ω/sq (coating : 40μ wet, drying: 6 min 130°C)

pH

2-3.5

점도

≤70 mPa.s(20 °C)

환경친화적 대안 카테고리

저장 온도

2-8°C

SMILES string

CC1=C2OCCOC2=C(C)S1.CCC(C3=CC=CC=C3)C.C[SO3-]

일반 설명

High-conductivity grade.
Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is a conductive polymer that is formed by electropolymerizing 3,4-ethylenedioxythiophene in a solution of poly(styrenesulfonate) (PSS). PEDOT is doped with positive ions and PSS with negative ions. It is mainly used in organic electronics due to the properties, which include
  • low band gap
  • good optical properties
  • high conductivity
  • low redox potential
  • easy processing
  • tunable film forming ability

We are committed to bringing you Greener Alternative Products, which adhere to one or more of the 12 Principles of Green Chemistry. This product is used in energy conversion and storage, thus has been enhanced for energy efficiency. Click here for more information.

애플리케이션

Orgacon S315 is ready-to-use and made with conductive polymer PEDOT:PSS. Typical application processes are slot die, Meyer bar and gravure coating. It is particularly designed for optimal properties on PET and meet the requirements of several transparent electrodes applications as alternative to ITO.

  • ITO substitution coating.
  • ITO-free OPV.

  • Surface electrical resistance (SER) at 90% VLT* (visual light transmission): 125 Ω/square.
*Typical properties on PET with bar coater. Thermal cured at 130 °C/ 6 min. VLT according to ASTM D 1003, excludes substrate.
  • Stability ratio R/R_0 (500 hr at 60 °C, 95% RH) : 1.3.
PEDOT:PSS can be used as an electrode material with high mobility for charge carriers. It can be used for a wide range of energy based applications such as organic photovoltaics (OPV), dye sensitized solar cells (DSSCs), organic light emitting diodes (OLEDs), supercapacitors and biomedical sensors.
PEDOT:PSS is widely used as a transparent and conductive coating in applications like touchscreens, flat panel displays, and photovoltaic devices. It is commonly used as an electrode material in OPVs. It serves as the hole transport layer and a transparent anode, enabling efficient charge extraction and transport within the device.

제조 메모

  • Dilute with DI water or compatible solvent if needed.
  • Pre-treated substrate with corona- or plasma treatment increase adhesion.

기타 정보

  • These additives have low water content (less than 100 ppm).
  • Please handle under inert and moisture free environment (glove box).
  • Keep containers tightly closed.
  • Keep away from heat and ignition sources.
  • Store in a cool and dry place.
  • Avoid storing together with oxidizers.

법적 정보

Orgacon is a trademark of Agfa-Gevaert N.V.

픽토그램

Exclamation mark

신호어

Warning

유해 및 위험 성명서

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2

Storage Class Code

12 - Non Combustible Liquids

WGK

WGK 2

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable


시험 성적서(COA)

제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Roll-to-Roll Slot-Die Coated Organic Photovoltaic (OPV) Modules with High Geometrical Fill Factors
Galagan Y, et al.
Energy Technology, 3(8), 834-842 (2015)
Functionalized graphene/poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate as counter electrode catalyst for dye-sensitized solar cells
Yue G, et al.
Energy, 54(8), 315-321 (2013)
High efficiency, fully inkjet printed organic solar cells with freedom of design
Eggenhuisen TM, et al.
Journal of Material Chemistry A, 3(14), 7255-7262 (2015)
Stability of polypyrrole and poly (3, 4-ethylenedioxythiophene) for biosensor application.
Yamato H, et al.
Journal of Electroanalytical Chemistry, 397(1-2), 163-170 (1995)
Stability of the interface between indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes.
De Jong MP, et al.
Applied Physics Letters, 77(14), 2255-2257 (2000)

문서

A detailed article on conducting polymer materials for flexible organic photovoltaics (OPVs) applications.

Advancements in bioelectronics, incorporating self-healing materials for wearable devices, and measuring bioelectric signals to assess physiological parameters.

Progress in Organic Thermoelectric Materials & Devices including high ZT values of >0.2 at room temperature by p-type (PEDOT:PSS) & n-type (Poly[Kx(Ni-ett)]) materials are discussed.

To achieve net-zero emissions by 2050, renewable power contributions must triple. Photovoltaic stations provide vital utility power, achieved primarily through third- and fourth-generation technology. Promising trends include recycling and revolutionary, ultra-lightweight, flexible, and printable solar cells.

모두 보기

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.