추천 제품
Quality Level
양식
powder
입자 크기
1000 nm
공극 크기
40 Å pore size
bp
2230 °C (lit.)
mp
>1600 °C (lit.)
SMILES string
O=[Si]=O
InChI
1S/O2Si/c1-3-2
InChI key
VYPSYNLAJGMNEJ-UHFFFAOYSA-N
유사한 제품을 찾으십니까? 방문 제품 비교 안내
일반 설명
Our hollow silica nanoparticles are precisely engineered spherical particles of silicon dioxide with a purity of 99.999%. These particles have a uniform particle size of 1000 nm comprised of a porous silica shell, with an average pore size of 40 Å, that surrounds the central hollow cavity. The structure and design of these nanoparticles play a vital role in determining their unique physical characteristics. These properties include low density, a large specific surface area, low dielectric constant, low electrical and thermal conductivity, as well as abnormal light scattering behavior.
애플리케이션
Hollow silica nanoparticles find application in many areas including drug delivery, catalysis, thermal insulation, and functional coatings. In drug delivery, the hollow interior of the nanoparticles can be used to encapsulate and deliver drugs to specific targets. The average 2-nm sized pores can selectively allow certain molecules to pass through while blocking or slowing others. In catalysis, the nanoparticles can act as catalyst supports due to their high surface area and porosity. Hollow silica nanoparticles impregnated with the catalyst may be particularly useful in environments with complex matrices where the porosity of the particle facilitates the isolation of reactants from matrix elements. In electronic applications, hollow silica’s low thermal conductivity can be utilized to improve thermal insulation properties and their monodisperse particle size facilitates their self-assembly into arrays with unique optical and electrical properties.
Storage Class Code
11 - Combustible Solids
WGK
nwg
Flash Point (°F)
Not applicable
Flash Point (°C)
Not applicable
가장 최신 버전 중 하나를 선택하세요:
Hollow Silica Particles: Recent Progress and Future Perspectives
Nanomaterials (Basel, Switzerland), 10, 1599-1599 (2020)
A Comprehensive Study of Drug Loading in Hollow Mesoporous Silica Nanoparticles: Impacting Factors and Loading Efficiency
Nanomaterials (Basel, Switzerland), 11, 1293-1293 (2021)
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.