MilliporeSigma
All Photos(3)

Documents

191973

Sigma-Aldrich

Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) solution

average Mw 2,000,000, 15 wt. % in H2O

Sign Into View Organizational & Contract Pricing

Select a Size

Change View

Select a Size

Change View
Synonym(s):
2-Acrylamido-2-methyl-1-propanesulfonic acid polymer, 2-Acrylamido-2-methylpropanesulfonic acid polymer, PolyAMPS
CAS Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

mol wt

average Mw 2,000,000

concentration

15 wt. % in H2O

pH

1.0-3.0

surface tension

79.8 dyn/cm, 1 wt. %

viscosity

~200,000 cP, Brookfield RVT(lit.)

acid number

41‑45 mg KOH/g

SMILES string

CC(C)(CS(O)(=O)=O)NC(=O)C=C

InChI

1S/C7H13NO4S/c1-4-6(9)8-7(2,3)5-13(10,11)12/h4H,1,5H2,2-3H3,(H,8,9)(H,10,11,12)

InChI key

XHZPRMZZQOIPDS-UHFFFAOYSA-N

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
6558211919818.18667
mol wt

average Mw 2,000,000

mol wt

-

mol wt

-

mol wt

-

concentration

15 wt. % in H2O

concentration

50 wt. % in H2O

concentration

-

concentration

-

pH

1.0-3.0

pH

-

pH

-

pH

-

surface tension

79.8 dyn/cm, 1 wt. %

surface tension

-

surface tension

-

surface tension

-

acid number

41‑45 mg KOH/g

acid number

-

acid number

-

acid number

-

Application

Thickening agent for acidic or basic cleaning agents, friction reducing agent, water-based lubricant, mineral scale remover and suspension aid for pigments and fillers. Rheology control agent in water and some organic solvents.

Features and Benefits

Solutions are pseudoplastic but not thixotropic. Stable in 50% HCl solutions. Compatible with anionic and non-ionic thickeners, surfactants and preservatives.

Pictograms

Corrosion

Signal Word

Danger

Hazard Statements

Precautionary Statements

Hazard Classifications

Skin Corr. 1A

Storage Class Code

8A - Combustible, corrosive hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Yong Mei Chen et al.
Journal of nanoscience and nanotechnology, 7(3), 773-779 (2007-04-25)
Hydrogel micropatterns of 10 approximately 200 microm in width were introduced during the polymerization of 2-acrylamido-2-methyl-propane sulfonic acid sodium salt (NaAMPS) on the surface of polyacrylamide (PAAm) gel. Behaviors of endothelial cells on the micropatterned PNaAMPS/PAAm gel surfaces were studied.
Saurabh Shrivastava et al.
Journal of colloid and interface science, 350(1), 220-228 (2010-07-17)
The formation of micelle-like nanosize aggregates above a critical aggregation concentration (CAC) by a water-soluble, amphiphilic, and statistical copolymer poly(SAMPS/DA) of sodium N-acrylamidomethylpropanesulfonate (SAMPS) and N-dodecylacrylamide (DA) was studied. The structural changes that result from the interactions between the polymeric
Yoshie Tanabe et al.
Journal of materials science. Materials in medicine, 19(3), 1379-1387 (2007-10-05)
The study evaluated biological reaction of four types of novel double network gels in muscle and subcutaneous tissues, using implantation tests according to the international guideline. The implantation tests demonstrated that, although poly (2-acrylamide-2-metyl-propane sulfonic acid)/poly (N,N'-dimetyl acrylamide) (PAMPS/PDMAAm) gel
Elena Yancheva et al.
Macromolecular bioscience, 7(7), 940-954 (2007-06-21)
Polyelectrolyte complexes (PECs) between (quaternized) poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and (crosslinked) N-carboxyethylchitosan (CECh) or poly(2-acrylamido-2-methylpropane sodium sulfonate) (PAMPSNa) were prepared and characterized in terms of their stability, equilibrium water content, and surface morphology. The evaluation of the behavior of the studied
Xian-Zheng Zhang et al.
Journal of materials science. Materials in medicine, 18(9), 1771-1779 (2007-05-08)
A new family of poly(NIPAAm-co-2-acrylamido-2-methyl-1-propanesulfonic acid) [P(NIPAAm-co-AMPSA)] hydrogels was synthesized by incorporating negative charged AMPSA to the backbone of the PNIPAAm-based hydrogel. The effect of polyelectrolyte (i.e., PAMPSA) on the thermosensitive property of PNIPAAm hydrogels was investigated. It was found

Articles

We present an article that discusses two applications in particular; first, using these layers as polyelectrolyte membranes to control permeability.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service