MilliporeSigma
All Photos(1)

Documents

655821

Sigma-Aldrich

2-Acrylamido-2-methyl-1-propanesulfonic acid sodium salt solution

50 wt. % in H2O

Sign Into View Organizational & Contract Pricing

Select a Size

Change View

Select a Size

Change View
Synonym(s):
2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid sodium, Sodium 2-acrylamido-2-methyl-1-propanesulfonate, Sodium acryloyldimethyltaurate
Linear Formula:
H2C=CHCONHC(CH3)2CH2SO3Na
CAS Number:
Molecular Weight:
229.23
MDL number:
PubChem Substance ID:
NACRES:
NA.23

Quality Level

concentration

50 wt. % in H2O

refractive index

n20/D 1.4220 (lit.)

density

1.2055 g/mL at 25 °C (lit.)

SMILES string

[Na+].CC(C)(CS([O-])(=O)=O)NC(=O)C=C

InChI

1S/C7H13NO4S.Na/c1-4-6(9)8-7(2,3)5-13(10,11)12;/h4H,1,5H2,2-3H3,(H,8,9)(H,10,11,12);/q;+1/p-1

InChI key

FWFUWXVFYKCSQA-UHFFFAOYSA-M

Related Categories

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
409421Y0001497178837
refractive index

n20/D 1.4220 (lit.)

refractive index

n20/D 1.394

refractive index

-

refractive index

-

density

1.2055 g/mL at 25 °C (lit.)

density

1.17 g/mL at 25 °C

density

-

density

-

General description

2-Acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS Na) is a monomer that belongs to the class of sulfonic acid monomers. It is commonly used in the production of various polymers, such as polyacrylamide co-polymers, poly(AMPS), AMPS-functionalized polymers, and hydrogels . These polymers are used in paints, adhesives, textiles, paper manufacturing, personal care products, coating, and adhesive applications. Additionally, AMPSNa also serves as a comonomer in combination with other acrylic monomers to enhance the scrub resistance and dispersant performance of paper coatings and paint emulsions. It can be used as a dopant and a protonating agent for conducting polymers. It is used in a variety of electronic applications.

Application

2-Acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS Na) can be used:
  • As a monomer in the formation of polyelectrolyte copolymer gels for potential application in bioengineering, biomedicine, and water purification .
  • In the fabrication of Schottky diodes, humidity sensors, and lithium-ion batteries.
  • As a monomer in the synthesis of a hydrogel nanocomposite applicable as a potential adsorbent for dyes .

Storage Class Code

10 - Combustible liquids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Aurora Mejia et al.
ACS omega, 4(6), 11119-11125 (2019-08-29)
High molar masses homopolymers of both acrylamide (AM) and 2-acrylamido-2-methylpropanesulfonate (AMPS) as well as poly(AM-stat-AMPS) exhibiting a large range copolymer composition has been obtained via the optimization of a purely adiabatic gel process. Monomer concentrations ranging from 2.0 to 3.47
Polymeric absorbent for water sorption based on chemically crosslinked poly (acrylamide/2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt) hydrogels
Uzum OB, et al.
Polymer Bull., 57(5), 703-712 (2006)
K Chandrasekar et al.
Biomacromolecules, 8(5), 1665-1675 (2007-04-12)
Cholesterol mesogen containing monomer, cholesteryl acrylamido butyrate (CAB) with the novel spacer group drawn from 4-amino butyric acid has been demonstrated to exhibit good reactivity with 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) to yield copolymers with CAB content as high as 15
K Chandrasekar et al.
Biomacromolecules, 9(4), 1264-1272 (2008-03-01)
Ionic polymeric amphiphiles consisting of cholesterol mesogen were investigated for the interfacial adsorption characteristics at the air/water interface using a Langmuir film balance with an aim to understand the influence of ionic segment from 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) on the
Ranjith Krishna Pai et al.
Journal of the American Chemical Society, 130(39), 13074-13078 (2008-09-05)
In the biomineralization process, the changes in conformation of organic matrix may be a widespread phenomenon. Investigation of the structural relationship between organic and inorganic materials is the main subject. The approach taken was to extract quantitative information of the

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service