761001
Lithium nickel manganese cobalt oxide
powder, <0.5 μm particle size, >98%
Recommended Products
grade
battery grade
Quality Level
assay
>98%
form
powder
mol wt
Mw 96.46 g/mol
composition
LiNi0.33Mn0.33Co0.33O2
greener alternative product characteristics
Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.
sustainability
Greener Alternative Product
particle size
<0.5 μm
mp
>290 °C (lit.)
density
2.11 g/cm3
application(s)
battery manufacturing
greener alternative category
, Enabling
Related Categories
General description
Application
Features and Benefits
- More Reliable
- Longer Cycle Life
- Bulk and Pilot Scale Available
Legal Information
Related product
signalword
Warning
hcodes
Hazard Classifications
Carc. 2 - Skin Sens. 1
wgk_germany
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
Certificates of Analysis (COA)
Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Articles
Professor Qiao's review explores stable microstructures for lithium metal fluoride batteries, advancing energy storage technologies.
Solid oxide fuel cells and electrolyzers show potential for chemical-to-electrical energy conversion, despite early development stages.
Li-ion batteries are currently the focus of numerous research efforts with applications designed to reduce carbon-based emissions and improve energy storage capabilities.
Lithium-ion batteries offer high energy density and cyclic performance for portable electronic devices.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service