Skip to Content
MilliporeSigma
All Photos(2)

Key Documents

934682

Sigma-Aldrich

NMC532

greener alternative

electrode sheet, aluminum substrate, size 5 in. × 10 in.

Synonym(s):

Lithium nickel manganese cobalt oxide, NMC 532 cathode

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
LiNi0.5Mn0.3Co0.2O2
Molecular Weight:
96.55
UNSPSC Code:
26111700
NACRES:
NA.21

material

aluminum substrate (current collector)

Quality Level

grade

battery grade

description

3.75 V vs. Li/Li+

assay

≥98% (active material characteristic)

composition

Active material loading 12.1 mg/cm2 ± 5%

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

size

16 μm , aluminum current collector
5 in. × 10 in.
70 μm , excluding current collector

avg. part. size

8-12 μm (active material characteristic)

capacity

165 mAh/g±5 % (Nominal discharge)
2.0 mAh/cm2±5 % (Areal)

application(s)

battery manufacturing

greener alternative category

General description

NMC532, electrode sheet, aluminum substrate, is a ready-to-use cathode for lithium-ion battery research. NMC532 is a quaternary lithium metal oxide, with the formula LiNi0.5Mn0.3Co0.2O2, and is a state-of-the-art cathode material for lithium-ion batteries that offers high energy density and cycle lifetimes. The composition of our cathode film is 90% active material, 5% PVDF binder, 5% Carbon black.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Click here for more information.

Application

The main application of our NMC532 electrode sheet is as a cathode for next-generation lithium-ion batteries (LIBs). The 532 refers to the ratio of metals in the active material that combine to give the high performance: nickel provides high energy density while the manganese and cobalt help to stabilize the spinel crystal structure to extend the cycle lifetime at moderate-high operating temperatures. As a result, our cathode sheet achieves high capacity (>155 mAh/g gravimetric capacity, 2.0 mAh/cm2 areal capacity) and long cycle lifetimes, while offering a high nominal voltage of 3.75 V vs. Li/Li+. NMC532 is the optimal composition to maintain the good thermal stability of low-nickel compositions (e.g. NMC111), while also having a high capacity close to the high-nickel-content materials (e.g., NMC811 and NMC622). The recommended charge rate for our sheet is 1 °C and discharge rate up to 5 °C.

pictograms

Health hazardExclamation mark

signalword

Warning

hcodes

Hazard Classifications

Carc. 2 - Skin Sens. 1

Storage Class

13 - Non Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Arumugam Manthiram
ACS central science, 3(10), 1063-1069 (2017-11-07)
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters-energy, power
Peiyu Hou et al.
Small (Weinheim an der Bergstrasse, Germany), 13(45), 1701802-1701802 (2017-10-05)
The urgent prerequisites of high energy-density and superior electrochemical properties have been the main inspiration for the advancement of cathode materials in lithium-ion batteries (LIBs) in the last two decades. Nickel-rich layered transition-metal oxides with large reversible capacity as well
Seong-Min Bak et al.
ACS applied materials & interfaces, 6(24), 22594-22601 (2014-11-25)
Thermal stability of charged LiNixMnyCozO2 (NMC, with x + y + z = 1, x:y:z = 4:3:3 (NMC433), 5:3:2 (NMC532), 6:2:2 (NMC622), and 8:1:1 (NMC811)) cathode materials is systematically studied using combined in situ time-resolved X-ray diffraction and mass spectroscopy

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service