MilliporeSigma
All Photos(2)

Documents

932671

Sigma-Aldrich

4,7-Diphenyl-1,10-phenanthroline

Sign Into View Organizational & Contract Pricing

Synonym(s):
Bathophenanthroline, 4,7-Diphenyl-1,10-phenanthroline, BPhen
Empirical Formula (Hill Notation):
C24H16N2
CAS Number:
Molecular Weight:
332.40
Beilstein/REAXYS Number:
261048
MDL number:

grade

sublimed grade

Quality Level

description

µe ≈ 3.0 x 10-4 cm2V-1s-1

assay

≥99% (H-NMR)

form

powder

loss

0.5% TGA, >240ºC (weight loss)

mp

218-220 °C (lit.)

solubility

THF: soluble
chloroform: soluble
dichloromethane: soluble

λmax

272 nm in THF

fluorescence

λem 379 nm in THF

orbital energy

HOMO 6.4 eV 
LUMO 3.0 eV 

SMILES string

c1ccc(cc1)-c2ccnc3c2ccc4c(ccnc34)-c5ccccc5

InChI

1S/C24H16N2/c1-3-7-17(8-4-1)19-13-15-25-23-21(19)11-12-22-20(14-16-26-24(22)23)18-9-5-2-6-10-18/h1-16H

InChI key

DHDHJYNTEFLIHY-UHFFFAOYSA-N

Related Categories

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
6315079326638.41491
4,7-Diphenyl-1,10-phenanthroline

932671

4,7-Diphenyl-1,10-phenanthroline

1,10-Phenanthrolin-5-amine 97%

631507

1,10-Phenanthrolin-5-amine

1,10-Phenanthroline (anhydrous) for synthesis

8.41491

1,10-Phenanthroline

mp

218-220 °C (lit.)

mp

254-258 °C (lit.)

mp

279-283 °C (lit.)

mp

117-119 °C

grade

sublimed grade

grade

-

grade

sublimed grade

grade

-

description

µe ≈ 3.0 x 10-4 cm2V-1s-1

description

-

description

µe ≈ 5.5 x 10-6 cm2V-1s-1

description

-

assay

≥99% (H-NMR)

assay

97%

assay

≥99% (HPLC)

assay

-

form

powder

form

-

form

-

form

powder

Application

Intermolecular charge-transfer states at the interface between electron donating (D) and accepting (A) materials are crucial for the operation of organic electronics, such as solar cells, transistors and organic light-emitting diodes (OLEDs). The 4,7-Diphenyl-1,10-phenanthroline, also known as Bathophenanthroline (Bphen) enables use as Electron Transport / Hole Blocking Layer (ETL / HBL) in your organic electronic devices. It has a μe of about 3.0 x 10-4 cm2 V−1 s−1 and is solution-processable.

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Highly efficient inverted organic light-emitting devices adopting solution-processed double electron-injection layers.
Chen, Y. et al.
Organic Electronics, 66, 1-6 (2019)
Strong light-matter coupling for reduced photon energy losses in organic photovoltaics
Nikolis, V. et al.
Nature Communications, 10, 1-8 (2019)
Light outcoupling efficiency enhancement in organic light emitting diodes using an organic scattering layer
Grover Rakhi, et al.
Physica Status Solidi RRL: Rapid Research Letters, 8, 81?85-81?85 (2014)
Initial photochemical stability in perovskite solar cells based on the Cu electrode and the appropriate charge transport layers
Tan, Wenjun, et al.
Synthetic Metals, 246, 101-107 (2018)
Emissive and charge-generating donor-acceptor interfaces for organic optoelectronics with low voltage losses
Ullbrich, S. et al.
Nature Materials, 18, 459-464 (2019)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service