All Photos(1)




NanoFabTx NanoFlash PEG-PCL drug formulation screening kit

for CIJ synthesis of nanoparticles

Sign Into View Organizational & Contract Pricing

storage temp.



NanoFabTx NanoFlash PEG-PCL drug formulation screening kit is a ready to use nanoformulation kit for flash nanoprecipitation synthesis of PEGylated poly(caprolactone) (PCL) nanoparticles for drug delivery research applications. This kit contains rationally selected PEGylated PCL polymers and stabilizer, enabling users to screen and select nanoformulations without the need for lenghty trial and error optimization. These PEGylated PCL polymers have been widely used in drug delivery systems for controlled drug release of many different types of therapeutic molecules.

This kit has been curated and designed for flash nanoprecipitiaton (FNP) nanoparticle synthesis using a confined impingement jet (CIJ) mixer, such as the NanoFabTx NanoFlash CIJ Mixer, and detailed step-by-step instructions are provided.

Features and Benefits

  • Ready-to-use nanoformulation kit for PEGylated nanoparticles
  • Step-by-step flash nanoprecipitation protocol
  • Create specifically sized, biodegradable, PEGylated PCL nanoparticles
  • Maximize the encapsulation of hydrophobic drugs
  • Three different PEGylated PCL polymers are included
  • Optimized for 60 nm-150 nm nanoparticles
A flash nanoprecipitation protocol to prepare drug-encapsulated nanoparticles using the NanoFabTx NanoFlash CIJ Mixer is included and can be found under the Protocol section of this page.

Legal Information

NANOFABTX is a trademark of Sigma-Aldrich Co. LLC

Storage Class Code

11 - Combustible Solids



Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).


Product Number
Pack Size/Quantity

Additional examples:





enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Jing Han et al.
Journal of pharmaceutical sciences, 101(10), 4018-4023 (2012-07-11)
Johnson and Prud'homme (2003. AICHE J 49:2264-2282) introduced the confined impingement jets (CIJ) mixer to prepare nanoparticles loaded with hydrophobic compounds (e.g., drugs, inks, fragrances, or pheromones) via flash nanoprecipitation (FNP). We have modified the original CIJ design to allow
C Thomasin et al.
Journal of pharmaceutical sciences, 87(3), 269-275 (1998-04-02)
Phase separation (frequently called coacervation) of poly(lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) is a classical method for drug microencapsulation. Here, attempts have been made to describe this process in the light of thermodynamics. Different PLA/PLGAs were dissolved in either dichloromethane or
Nazila Kamaly et al.
Chemical Society reviews, 41(7), 2971-3010 (2012-03-06)
Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery
Verónica Lassalle et al.
Macromolecular bioscience, 7(6), 767-783 (2007-06-02)
The controlled release of medicaments remains the most convenient way of drug delivery. Therefore, a wide variety of reports can be found in the open literature dealing with drug delivery systems. In particular, the use of nano- and microparticles devices
Byung Kook Lee et al.
Advanced drug delivery reviews, 107, 176-191 (2016-06-06)
Poly(d,l-lactic acid) (PLA) has been widely used for various biomedical applications for its biodegradable, biocompatible, and nontoxic properties. Various methods, such as emulsion, salting out, and precipitation, have been used to make better PLA micro- and nano-particle formulations. They are

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service