MilliporeSigma
All Photos(3)

Documents

N2752

Sigma-Aldrich

4-Nitrophenyl palmitate

lipase substrate

Sign Into View Organizational & Contract Pricing

Synonym(s):
p-Nitrophenyl palmitate, Hexadecanoic acid 4-nitrophenyl ester
Empirical Formula (Hill Notation):
C22H35NO4
CAS Number:
Molecular Weight:
377.52
Beilstein/REAXYS Number:
1891754
EC Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.83

Quality Level

assay

≥98% (TLC)

form

powder

solubility

chloroform: 100 mg/mL, clear, colorless to faintly yellow

storage temp.

−20°C

SMILES string

CCCCCCCCCCCCCCCC(=O)Oc1ccc(cc1)[N+]([O-])=O

InChI

1S/C22H35NO4/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-22(24)27-21-18-16-20(17-19-21)23(25)26/h16-19H,2-15H2,1H3

InChI key

LVZSQWIWCANHPF-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
N3627N8638N9876
4-Nitrophenyl palmitate lipase substrate

N2752

4-Nitrophenyl palmitate

4-Nitrophenyl stearate lipase substrate

N3627

4-Nitrophenyl stearate

4-Nitrophenyl butyrate ≥98%

N9876

4-Nitrophenyl butyrate

solubility

chloroform: 100 mg/mL, clear, colorless to faintly yellow

solubility

chloroform: 100 mg/mL, clear to slightly hazy, colorless to light yellow

solubility

DMSO: 9.80-10.20 mg/mL, clear to slightly hazy, colorless to yellow

solubility

-

Quality Level

200

Quality Level

200

Quality Level

200

Quality Level

200

form

powder

form

powder

form

powder

form

liquid

storage temp.

−20°C

storage temp.

−20°C

storage temp.

2-8°C

storage temp.

−20°C

General description

4-Nitrophenyl palmitate is a substrate for lipase enzyme activity. Lipase hydrolyzes 4-nitrophenyl palmitate and yields the yellow colored product 4-nitrophenol, which is measurable spectrophotometrically at 410 nm. This method is advantageous due to its short reaction time and facile spectrophotometric analyses. The cell-bound lipase has preference for 4-nitrophenyl palmitate as substrate than the extracellular lipase.

Application

4-nitrophenyl palmitate has been used as a substrate for lipase enzyme activity.

pictograms

Exclamation mark

signalword

Warning

hcodes

pcodes

Hazard Classifications

Skin Sens. 1

Storage Class

11 - Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Faceshields, Gloves


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

M M Maia et al.
Bioresource technology, 76(1), 23-27 (2001-04-24)
Lipase (Glycerol ester hydrolase EC 3.1.1.3.) from a Brazilian strain of Fusarium solani FSI has been investigated. The effect of different carbon sources and trace elements added to basal medium was observed with the aim of improving enzyme production. Lipase
Shamoon Asmat et al.
Materials science & engineering. C, Materials for biological applications, 99, 25-36 (2019-03-21)
Herein, as a promising support, a magnetic enzyme nanoformulation have been designed and fabricated by a poly-o-toluidine modification approach. Owing to the magnetic nature and the existence of amine functionalized groups, the as-synthesised poly(o-toluidine) functionalized magnetic nanocomposite (Fe3O4@POT) was employed
Lipase and biosurfactant from Ochrobactrum intermedium strain MZV101 isolated by washing powder for detergent application
Zarinviarsagh M, et al.
Lipids in Health and Disease, 16(1), 177-177 (2017)
Differences in hydrolytic abilities of two crude lipases from Geotrichum candidum 4013
Brabcova J, et al.
Yeast, 27(12), 1029-1038 (2010)
Microbial enzymatic activities in aerobic activated sludge model reactors
Li Y and Chrost RJ
Enzyme and Microbial Technology, 39(4), 568-572 (2006)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service