MilliporeSigma
All Photos(1)

Documents

SAE0093

Sigma-Aldrich

Beta-1,4-galactosyltransferase 1

B4GALT1 human recombinant, expressed in HEK 293 cells, 2000 units/mg protein

Sign Into View Organizational & Contract Pricing

Synonym(s):
Beta-1,4-GalTase 1, Beta4Gal-T1, UDP-Gal:beta-GlcNAc beta-1,4-galactosyltransferase 1, UDP-galactose:beta-N-acetylglucosamine beta-1,4-galactosyltransferase 1, b4Gal-T1

recombinant

expressed in HEK 293 cells

assay

95% (SDS-PAGE)

form

lyophilized powder

specific activity

2000 units/mg protein

shipped in

ambient

storage temp.

−20°C

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
SAE0090G5507SRP0416
Beta-1,4-galactosyltransferase 1 B4GALT1 human recombinant, expressed in HEK 293 cells, 2000 units/mg protein

SAE0093

Beta-1,4-galactosyltransferase 1

T4 Beta-glucosyltransferase recombinant, expressed in E. coli, ≥83% (SDS-PAGE)

SRP0416

T4 Beta-glucosyltransferase

specific activity

2000 units/mg protein

specific activity

≥300 units/mg protein

specific activity

3.0-15.0 units/mg protein (in the presence of adequate α-lactalbumin, without added α-lactalbumin the activity is zero)

specific activity

-

form

lyophilized powder

form

lyophilized powder

form

lyophilized powder

form

aqueous solution

recombinant

expressed in HEK 293 cells

recombinant

expressed in HEK 293 cells

recombinant

-

recombinant

expressed in E. coli

shipped in

ambient

shipped in

ambient

shipped in

-

shipped in

dry ice

storage temp.

−20°C

storage temp.

−20°C

storage temp.

−20°C

storage temp.

−70°C

General description

Recombinant human Beta-1,4-galactosyltransferase 1 (B4GALT1) is expressed in human HEK 293 cells as a glycoprotein with a calculated molecular mass of 40 kDa. The DTT-reduced protein migrates as a ~55 kDa polypeptide on SDS-PAGE due to glycosylation. This protein is manufactured in human cells, with no serum. The human cells expression system allows human-like glycosylation and folding, and often supports higher specific activity of the protein.

Application

This recombinant B4GALT1 product can be used to study the mode of action of the enzyme, as well as its potential inhibitors. It can also be used as a glycoengineering tool to modify glycoproteins in vitro.

Biochem/physiol Actions

β(1→4) galactosyltransferase 1 (B4GALT1) is a type II membrane-bound glycoprotein that transfers galactose from uridine diphosphate-α-D-galactose (UDP-galactose) to acceptor sugars, such as N-Acetylglucosamine (GlcNAc), in a β(1→4) linkage. B4GALT1 resides in the Golgi apparatus of higher eukaryotic cells.
A major function of B4GALT1 is the addition of β(1→4) linked galactose residues to oligosaccharide acceptors with terminal N-acetylglucosamine residues. This is a late elongation step in the N-glycan processing pathway.B4GALT1 enzymatic activity is widely distributed in the vertebrate kingdom, in both mammals and non-mammals, including avians and amphibians.B4GALT1 enzymatic activity has also been demonstrated in a subset of plants which diverged from animals an estimated 1 billion years ago.B4GALT1 interacts with α-lactalbumin (LA), a protein expressed in the mammary gland during lactation, to form the lactose synthase (LS) complex that transfers galactose from UDP-α-D-Gal to glucose, producing the lactose secreted in milk.Defects in B4GALT1 are the cause of congenital disorder of glycosylation type 2D (CDG2D).Glomerular B4GALT1 expression has been found to be increased in IgA nephropathy. IgA binding and IgA-induced mesangial cell phosphorylation of spleen tyrosine kinase and IL-6 synthesis were inhibited by a panel of β(1→4) galactosyltransferase-specific antibodies, which suggests that IgA binds to the catalytic domain of β(1→4) galactosyltransferase.

Unit Definition

One unit is defined as the amount of enzyme required to transfer 1.0 nanomole of galactose from UDP-Gal to glucosamine per minute at pH 7.9, 37 oC.

Storage Class

11 - Combustible Solids

wgk_germany

WGK 2

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Verena Janes et al.
Cells, 9(3) (2020-03-07)
Genetic defects of human galactose-1-phosphate uridyltransferase (hGALT) and the partial loss of enzyme function result in an altered galactose metabolism with serious long-term developmental impairment of organs in classic galactosemia patients. In search for cellular pathomechanisms induced by the stressor

Articles

Glycosyltransferases were initially considered to be specific for a single glycosyl donor and acceptor, which led to the one enzyme-one linkage concept. Subsequent observations have refuted the theory of absolute enzymatic specificity by describing the transfer of analogs of some nucleoside mono- or diphosphate sugar donors.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service