Skip to Content
MilliporeSigma
  • Mechanochemical Crosstalk Produces Cell-Intrinsic Patterning of the Cortex to Orient the Mitotic Spindle.

Mechanochemical Crosstalk Produces Cell-Intrinsic Patterning of the Cortex to Orient the Mitotic Spindle.

Current biology : CB (2020-08-01)
Andrea Dimitracopoulos, Pragya Srivastava, Agathe Chaigne, Zaw Win, Roie Shlomovitz, Oscar M Lancaster, Maël Le Berre, Matthieu Piel, Kristian Franze, Guillaume Salbreux, Buzz Baum
ABSTRACT

Proliferating animal cells are able to orient their mitotic spindles along their interphase cell axis, setting up the axis of cell division, despite rounding up as they enter mitosis. This has previously been attributed to molecular memory and, more specifically, to the maintenance of adhesions and retraction fibers in mitosis [1-6], which are thought to act as local cues that pattern cortical Gαi, LGN, and nuclear mitotic apparatus protein (NuMA) [3, 7-18]. This cortical machinery then recruits and activates Dynein motors, which pull on astral microtubules to position the mitotic spindle. Here, we reveal a dynamic two-way crosstalk between the spindle and cortical motor complexes that depends on a Ran-guanosine triphosphate (GTP) signal [12], which is sufficient to drive continuous monopolar spindle motion independently of adhesive cues in flattened human cells in culture. Building on previous work [1, 12, 19-23], we implemented a physical model of the system that recapitulates the observed spindle-cortex interactions. Strikingly, when this model was used to study spindle dynamics in cells entering mitosis, the chromatin-based signal was found to preferentially clear force generators from the short cell axis, so that cortical motors pulling on astral microtubules align bipolar spindles with the interphase long cell axis, without requiring a fixed cue or a physical memory of interphase shape. Thus, our analysis shows that the ability of chromatin to pattern the cortex during the process of mitotic rounding is sufficient to translate interphase shape into a cortical pattern that can be read by the spindle, which then guides the axis of cell division.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Y-27632 dihydrochloride, ≥98% (HPLC)
Sigma-Aldrich
Nocodazole, ≥99% (TLC), powder
Sigma-Aldrich
Phalloidin–Tetramethylrhodamine B isothiocyanate, sequence from Amanita phalloides(synthetic: peptide sequence)
Sigma-Aldrich
Algal chloroform-soluble extract-13C, 99 atom % 13C
Sigma-Aldrich
(+)-S-Trityl-L-cysteine, 97%
Hamilton® GASTIGHT® syringe, 1700 series, 1701N, volume 10 μL, needle size 26s ga (bevel tip), needle L 51 mm (2 in.)
Sigma-Aldrich
Anti-α-Tubulin−FITC antibody, Mouse monoclonal, clone DM1A, purified from hybridoma cell culture
Sigma-Aldrich
Importazole, ≥98% (HPLC)
Sigma-Aldrich
Fibronectin bovine plasma, solution, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Monoclonal Anti-α-Tubulin antibody produced in mouse, clone DM1A, ascites fluid
Sigma-Aldrich
Triton X-100, for molecular biology