Skip to Content
MilliporeSigma
  • Carbon partitioning and the impact of starch deficiency on the initial response of Arabidopsis to chilling temperatures.

Carbon partitioning and the impact of starch deficiency on the initial response of Arabidopsis to chilling temperatures.

Plant science : an international journal of experimental plant biology (2011-06-21)
Richard Sicher
ABSTRACT

Metabolites and stress related transcripts were measured in Arabidopsis thaliana in response to chilling temperatures. Rates of carbon assimilation increased 17% on average in response to cold treatment. Sucrose, glucose and fructose accumulation consumed 42% of the carbon from A but leaf starch only could synthesize ~10% of observed changes in soluble sugars. Carbohydrates were the only major class of metabolites that accumulated during the first 24 h of cold treatment. Except maltose and raffinose, carbohydrate accumulation was abolished when cold treatments were in darkness. Starch hydrolysis was correlated with maltose accumulation and increased expression of BAM3, which encodes a β-amylase necessary for starch mobilization. Hexose accumulation was delayed 6 h and raffinose accumulation was not observed in a starchless (pgm1) mutant. Changes of expression of five stress-induced transcripts in response to cold were similar in the wild type and in the pgm1 mutant. Three of five stress related transcripts had decreased expression when cold treatments were performed in the dark compared to the light. Therefore, starch hydrolysis may augment hexose and raffinose accumulations during the first 24 h after a cold shock and a partial cold stress response was observed in Arabidopsis during cold treatments in the dark.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
β-Amylase from barley, Type II-B, 20-80 units/mg protein (biuret)
Sigma-Aldrich
β-Amylase from sweet potato
Sigma-Aldrich
β-Amylase from sweet potato, Type I-B, ammonium sulfate suspension, ≥750 units/mg protein (E1%/280)