Skip to Content
MilliporeSigma
  • Chiral amino acid analysis of Japanese traditional Kurozu and the developmental changes during earthenware jar fermentation processes.

Chiral amino acid analysis of Japanese traditional Kurozu and the developmental changes during earthenware jar fermentation processes.

Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (2014-03-04)
Yurika Miyoshi, Masanobu Nagano, Shoto Ishigo, Yusuke Ito, Kazunori Hashiguchi, Naoto Hishida, Masashi Mita, Wolfgang Lindner, Kenji Hamase
ABSTRACT

Enantioselective amino acid metabolome analysis of the Japanese traditional black vinegars (amber rice vinegar, Kurozu) was performed using two-dimensional high-performance liquid chromatography combining a microbore-monolithic ODS column and narrowbore-enantioselective columns. d-Amino acids, the enantiomers of widely observed l-amino acids, are currently paid attention as novel physiologically active substances, and the foodstuffs and beverages containing high amounts of d-amino acids are the subjects of interest. In the present study, the amino acid enantiomers were determined by two-dimensional HPLC techniques after pre-column fluorescence derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole. In the first dimension, the amino acid enantiomers are separated as their d plus l mixtures by the reversed-phase mode, then the d-amino acids and their l-counterparts are separately determined in the second dimension by the enantioselective columns. As a result, large amounts of d-Ala (800-4000nmol/mL), d-Asp (200-400nmol/mL) and d-Glu (150-500nmol/mL) were observed in some of the traditionally produced Kurozu vinegars. Relatively large or small amounts of d-Ser (50-100nmol/mL), d-Leu (10-50nmol/mL) and d-allo-Ile (less than 20nmol/mL) were also present in these samples. Developmental changes in the d-amino acid amounts during the fermentation and aging processes have also been investigated.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, anhydrous, 99.8%
Supelco
Methanol, analytical standard
Sigma-Aldrich
Boric acid-11B, ≥99 atom % 11B
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
4-Fluoro-7-nitrobenzofurazan, ≥98% (elemental analysis)
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
4-Fluoro-7-nitrobenzofurazan, BioReagent, suitable for fluorescence, ≥98.0% (HPLC)
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%