Skip to Content
MilliporeSigma
  • Polyamine-capped gold nanorod as a localized surface Plasmon resonance probe for rapid and sensitive copper(II) ion detection.

Polyamine-capped gold nanorod as a localized surface Plasmon resonance probe for rapid and sensitive copper(II) ion detection.

Journal of colloid and interface science (2014-12-03)
Yingshuai Liu, Yanan Zhao, Yuchen Wang, Chang Ming Li
ABSTRACT

Polyamine-capped gold nanorods (AuNRs) were developed as nanoprobes for localized surface Plasmon resonance (LSPR)-based simple, selective, and sensitive detection of Cu(2+) ions. Poly(sodium-4-styrenesulfonate) (PSS) and polyethylenimine (PEI) was successively adsorbed on the positively charged AuNRs via electrostatic adsorption, resulting in polyamine-capped AuNRs (called "PEI-PSS-AuNRs" thereafter), in which PEI offered bifunctions of providing sufficient positive charges and static hindrance to ensure stability of the AuNRs and serving as a Cu(2+) ion recognition molecule via specific chelation. The as-prepared PEI-PSS-AuNRs were characterized by UV-vis spectroscopy, zeta potential analyzer, and transmission electron microscopy (TEM). Experimental results show that the polyelectrolytes PSS and PEI have been successfully adsorbed on AuNRs. The PEI-PSS-AuNRs were then employed as nanoprobes for Cu(2+) ion detection. A linear range from 1μM to 5mM and a detection limit (3σ/k) of 0.24μM were achieved in PBS. The concentration dependent shifts of longitudinal extinction peak of PEI-PSS-AuNRs notably results from the specific PEI-Cu(2+) chelation-induced changes of dielectric property of polyelectrolyte film attached on nanoprobes. The negligible interference from other metal ions demonstrates good selectivity of the PEI-PSS-AuNRs for Cu(2+) sensing. Moreover, the developed probes were successfully used to detect Cu(2+) in river water, demonstrating their feasibility for analysis of surface water sample.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Copper(II) chloride, SAJ first grade, ≥98.0%
Sigma-Aldrich
Copper(II) chloride, powder, 99%
Supelco
Hexadecyltrimethylammonium bromide, analytical standard
Supelco
Hexadecyltrimethylammonium bromide, suitable for ion pair chromatography, LiChropur
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, ≥96.0% (AT)
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, ≥98%
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, BioXtra, ≥99%
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, for molecular biology, ≥99%
Sigma-Aldrich
Sodium borohydride, purum p.a., ≥96% (gas-volumetric)
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, BioUltra, for molecular biology, ≥99.0% (AT)
Sigma-Aldrich
Copper(II) chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium borohydride, granular, 10-40 mesh, 98%
Sigma-Aldrich
Sodium borohydride, caplets (18 × 10 × 8 mm), 98%
Sigma-Aldrich
Copper(II) chloride, anhydrous, powder, ≥99.995% trace metals basis
Sigma-Aldrich
Sodium borohydride, ReagentPlus®, 99%
Sigma-Aldrich
Sodium borohydride, granular, 99.99% trace metals basis
Sigma-Aldrich
Copper(II) chloride, 97%
Supelco
Ascorbic Acid, Pharmaceutical Secondary Standard; Certified Reference Material
Ascorbic acid, European Pharmacopoeia (EP) Reference Standard
USP
Ascorbic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sodium borohydride, powder, ≥98.0%
Sigma-Aldrich
Sodium borohydride solution, 2.0 M in triethylene glycol dimethyl ether
Sigma-Aldrich
Sodium borohydride solution, ~12 wt. % in 14 M NaOH
Sigma-Aldrich
L-Ascorbic acid, puriss. p.a., ACS reagent, reag. ISO, Ph. Eur., 99.7-100.5% (oxidimetric)
Sigma-Aldrich
L-Ascorbic acid, FCC, FG
Sigma-Aldrich
L-Ascorbic acid, meets USP testing specifications
Sigma-Aldrich
VenPure® SF, powder
Sigma-Aldrich
L-Ascorbic acid, 99%
Sigma-Aldrich
L-Ascorbic acid, reagent grade
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline