Skip to Content
MilliporeSigma
  • Mediator Med23 deficiency enhances neural differentiation of murine embryonic stem cells through modulating BMP signaling.

Mediator Med23 deficiency enhances neural differentiation of murine embryonic stem cells through modulating BMP signaling.

Development (Cambridge, England) (2015-01-08)
Wanqu Zhu, Xiao Yao, Yan Liang, Dan Liang, Lu Song, Naihe Jing, Jinsong Li, Gang Wang
ABSTRACT

Unraveling the mechanisms underlying early neural differentiation of embryonic stem cells (ESCs) is crucial to developing cell-based therapies of neurodegenerative diseases. Neural fate acquisition is proposed to be controlled by a 'default' mechanism, for which the molecular regulation is not well understood. In this study, we investigated the functional roles of Mediator Med23 in pluripotency and lineage commitment of murine ESCs. Unexpectedly, we found that, despite the largely unchanged pluripotency and self-renewal of ESCs, Med23 depletion rendered the cells prone to neural differentiation in different differentiation assays. Knockdown of two other Mediator subunits, Med1 and Med15, did not alter the neural differentiation of ESCs. Med15 knockdown selectively inhibited endoderm differentiation, suggesting the specificity of cell fate control by distinctive Mediator subunits. Gene profiling revealed that Med23 depletion attenuated BMP signaling in ESCs. Mechanistically, MED23 modulated Bmp4 expression by controlling the activity of ETS1, which is involved in Bmp4 promoter-enhancer communication. Interestingly, med23 knockdown in zebrafish embryos also enhanced neural development at early embryogenesis, which could be reversed by co-injection of bmp4 mRNA. Taken together, our study reveals an intrinsic, restrictive role of MED23 in early neural development, thus providing new molecular insights for neural fate determination.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Nitrotetrazolium Blue chloride, powder, electrophoresis grade
Sigma-Aldrich
Sodium selenite, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
Progesterone, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Progesterone, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
Nitrotetrazolium Blue chloride, ≥90.0% (HPLC)
Sigma-Aldrich
1,4-Diaminobutane, 99%
Supelco
Progesterone, VETRANAL®, analytical standard
Supelco
Progesterone, Pharmaceutical Secondary Standard; Certified Reference Material
Progesterone, European Pharmacopoeia (EP) Reference Standard
Supelco
Putrescine, analytical standard
USP
Progesterone, United States Pharmacopeia (USP) Reference Standard
Progesterone for system suitability, European Pharmacopoeia (EP) Reference Standard
Progesterone for peak identification, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Progesterone, meets USP testing specifications
Sigma-Aldrich
Sodium selenite, SAJ first grade, ≥90.0%
Sigma-Aldrich
Progesterone, ≥99%
Sigma-Aldrich
Sodium selenite, γ-irradiated, lyophilized powder, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium selenite, anhydrous, ≥90.0% (RT)
Sigma-Aldrich
Sodium selenite, 99%
Roche
DIG RNA Labeling Kit (SP6/T7), sufficient for 2 x 10 labeling reactions, kit of 1 (12 components), suitable for hybridization, suitable for Southern blotting
Sigma-Aldrich
L-Glutamine, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
Sigma-Aldrich
L-Glutamine, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
L-Glutamine, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
L-Glutamine, BioUltra, ≥99.5% (NT)
SAFC
L-Glutamine
Supelco
L-Glutamine, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-Glutamine, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
L-Glutamine