Skip to Content
MilliporeSigma
  • Systemic influences contribute to prolonged microvascular rarefaction after brain irradiation: a role for endothelial progenitor cells.

Systemic influences contribute to prolonged microvascular rarefaction after brain irradiation: a role for endothelial progenitor cells.

American journal of physiology. Heart and circulatory physiology (2014-07-20)
Nicole M Ashpole, Junie P Warrington, Matthew C Mitschelen, Han Yan, Danuta Sosnowska, Tripti Gautam, Julie A Farley, Anna Csiszar, Zoltan Ungvari, William E Sonntag
ABSTRACT

Whole brain radiation therapy (WBRT) induces profound cerebral microvascular rarefaction throughout the hippocampus. Despite the vascular loss and localized cerebral hypoxia, angiogenesis fails to occur, which subsequently induces long-term deficits in learning and memory. The mechanisms underlying the absence of vessel recovery after WBRT are unknown. We tested the hypotheses that vascular recovery fails to occur under control conditions as a result of loss of angiogenic drive in the circulation, chronic tissue inflammation, and/or impaired endothelial cell production/recruitment. We also tested whether systemic hypoxia, which is known to promote vascular recovery, reverses these chronic changes in inflammation and endothelial cell production/recruitment. Ten-week-old C57BL/6 mice were subjected to a clinical series of fractionated WBRT: 4.5-Gy fractions 2 times/wk for 4 wk. Plasma from radiated mice increased in vitro endothelial cell proliferation and adhesion compared with plasma from control mice, indicating that WBRT did not suppress the proangiogenic drive. Analysis of cytokine levels within the hippocampus revealed that IL-10 and IL-12(p40) were significantly increased 1 mo after WBRT; however, systemic hypoxia did not reduce these inflammatory markers. Enumeration of endothelial progenitor cells (EPCs) in the bone marrow and circulation indicated that WBRT reduced EPC production, which was restored with systemic hypoxia. Furthermore, using a bone marrow transplantation model, we determined that bone marrow-derived endothelial-like cells home to the hippocampus after systemic hypoxia. Thus, the loss of production and homing of EPCs have an important role in the prolonged vascular rarefaction after WBRT.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Octane, electronic grade, ≥99.999% metals basis, ≥99% (CP)
Supelco
Octane, analytical standard
Sigma-Aldrich
Octane, anhydrous, ≥99%
Sigma-Aldrich
Octane, reagent grade, 98%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Millipore
Sucrose, suitable for microbiology, ACS reagent, ≥99.0%
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Supelco
Sucrose, analytical standard, for enzymatic assay kit SCA20
Sigma-Aldrich
Sucrose, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Sucrose, SAJ first grade
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
USP
Sucrose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ethylenediaminetetraacetic acid, SAJ special grade, ≥99.0%
Sigma-Aldrich
Sucrose, JIS special grade