Skip to Content
MilliporeSigma
  • Trace analysis of total naphthenic acids in aqueous environmental matrices by liquid chromatography/mass spectrometry-quadrupole time of flight mass spectrometry direct injection.

Trace analysis of total naphthenic acids in aqueous environmental matrices by liquid chromatography/mass spectrometry-quadrupole time of flight mass spectrometry direct injection.

Journal of chromatography. A (2015-06-16)
Pamela Brunswick, Dayue Shang, Graham van Aggelen, Ralph Hindle, L Mark Hewitt, Richard A Frank, Maxine Haberl, Marcus Kim
ABSTRACT

A rapid and sensitive liquid chromatography quadrupole time of flight method has been established for the determination of total naphthenic acid concentrations in aqueous samples. This is the first methodology that has been adopted for routine, high resolution, high throughput analysis of total naphthenic acids at trace levels in unprocessed samples. A calibration range from 0.02 to 1.0μgmL(-1) total Merichem naphthenic acids was validated and demonstrated excellent accuracy (97-111% recovery) and precision (1.9% RSD at 0.02μgmL(-1)). Quantitative validation was also demonstrated in a non-commercial oil sands process water (OSPW) acid extractable organics (AEOs) fraction containing a higher percentage of polycarboxylic acid isomers than the Merichem technical mix. The chromatographic method showed good calibration linearity of ≥0.999 RSQ to 0.005μgmL(-1) total naphthenic acids with a precision <3.1% RSD and a calculated detection limit of 0.0004μgmL(-1) employing Merichem technical mix reference material. The method is well suited to monitoring naturally occurring and industrially derived naphthenic acids (and other AEOs) present in surface and ground waters in the vicinity of mining developments. The advantage of the current method is its direct application to unprocessed environmental samples and to examine natural naphthenic acid isomer profiles. It is noted that where the isomer profile of samples differs from that of the reference material, results should be considered semi-quantitative due to the lack of matching isomer content. The fingerprint profile of naphthenic acids is known to be transitory during aging and the present method has the ability to adapt to monitoring of these changes in naphthenic acid content. The method's total ion scan approach allows for data previously collected to be examined retrospectively for specific analyte mass ions of interest. A list of potential naphthenic acid isomers that decrease in response with aging is proposed and a quantitative assay of an adamantane carboxylic acid is reported.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Isopropyl alcohol, ≥99.7%, FCC, FG
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetic acid, ≥99.7%, suitable for amino acid analysis
Sigma-Aldrich
Formaldehyde solution, 10%
Sigma-Aldrich
Acetic acid, SAJ first grade, ≥99.0%
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Formaldehyde solution, SAJ first grade, ≥35.0%, contains methanol as stabilizer
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Acetic acid, 99.5-100.0%
Sigma-Aldrich
Formaldehyde solution, JIS special grade, 36.0-38.0%, contains methanol as stabilizer
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Acetic acid, JIS special grade, ≥99.7%
Sigma-Aldrich
Acetic acid solution, 1 M, 1 N
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG